期刊文献+

进化神经网络研究综述 被引量:13

The Researching Overview of Evolutionary Neural Networks
下载PDF
导出
摘要 进化算法(EAs)与神经网络(NN)的结合已形成了一个新的领域—进化神经网络,在神经网络的研究中举足轻重。本文通过讨论和总结进化神经网络中的关键技术和现状,概述了其设计与构造的趋势。所讨论的是:(1)进化神经网络的研究方法;(2)进化模型;(3)应用实例及关键技术;(4)研究方向。 The combinations between Evolutionary Algorithms (EAs) and Neural Net works (NN) have become a new field - Evolutionary Neural Networks and play one of the center roles for the research on Neural Networks. By discussing and summarizing the key technologies and current status, the trends of Evolutionary Neural Networks design and construction are outlined. The topics discussed include; (1)the research methods of Evolutionary Neural Networks; (2)the several evolutionary models of Evolutionary Neural Networks; (3)the application instances and the key techniques of Evolutionary Neural Networks; and (4)the direction of Evolutionary Neural Networks.
出处 《计算机科学》 CSCD 北大核心 2004年第3期125-129,共5页 Computer Science
基金 国家自然科学基金(60273033) 江苏省自然科学基金(BK2001202)
关键词 进化神经网络 进化算法 神经网络 网络结构 信息处理 Evolutionary algorithm.Neural networks .Encode,Fitness
  • 相关文献

参考文献20

  • 1Whitley D. An overview of evolutionary algorithms: practical issues and common pitfalls. Information and Software Technology, 2001,43: 817-831
  • 2Yao X. Evolving Artificial Neural Networks. Proceedings of the IEEE,1999,87(9): 1423-1447
  • 3Sutton R S. Two problems with backpropagation and other steepest-descent learning procedures for networks. In:Proc. of 8th Annual Conf. of the Cognitive Science Society Lawrence Erlbaum Associates. Hillsdale, NJ, 1986. 823~ 831
  • 4Sexton R S, Gupta J N D. Comparative evaluation of genetic algorithm and backpropagation for training neural networks. Information Sciences, 2000,129: 45 - 59
  • 5Schraudolph N,Below R. Dynamic parameter encoding for genetic algorithms. Machine Learning, 1992,9(1): 9-21
  • 6Radcliffe N J. Genetic set recombination and its application to neural network topology optimization: [Technical report EPCCTR-91-21]. University of Edinbrugh, Edinbrugh, Scotland
  • 7Yao X,Liu Y. A new evolutionary system for evolvi()ng artificial neural networks. IEEE Transactions on Neural Networks, 1997,8(3) :694-713
  • 8Yao X,Liu Y,Darwen P. How to make best use of evolutionary learning,in Complex Systems: From Local Interactions to GlobalPhenomena,IOS Press, 1996. 229-242
  • 9Blanco A, Delgado M, Pegalajar M C.A real-coded genetic algorithm for training recurrent neural networks. Neural Networks, 2001,14: 93-105
  • 10Matteucci M, Veloso M. ELeaRNT: Evolutionary Learning of Rich Neural Net work Topologies. http://www. elet. polimi. it/-matteucc

同被引文献111

引证文献13

二级引证文献149

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部