期刊文献+

基于变精度粗集的分类方法 被引量:2

Classification Based on Variable Precision Rough Set
下载PDF
导出
摘要 基于差别矩阵的约简算法简单、计算量小,但是传统的差别矩阵不能处理噪声数据。为提高差别矩阵的适用范围,提出一种能够容忍数据中包含噪声的变精度差别矩阵,并给出改进的基于条件属性偏序关系的约简算法。最后,将这一方法用于对多类图像的分类过程中,将分类结果与BP网络的分类结果和基于传统Skowron差别矩阵方法的分类结果相比较表明这种分类方法具有较好的结果。 The reduction algorithm based on discernibility matrix is simple and easy,but it cant deal with noisy data. To make discernibility matrix more useful, we propose a new version of discernibility matrix, so called variable precision discernibility matrix, which can tolerate the noise of information, in addition, a reduction algorithm is also presented based on the partial order relation of the conditional attribute and used to do image classification. Compared with traditional BP network and Skowron discernibility matrix based method, the result will be much better.
出处 《计算机科学》 CSCD 北大核心 2004年第3期142-144,共3页 Computer Science
基金 国防十五重点预研项目(102010302) 研究生创新基金(Z20030046) 校青年基金(521020101-0900-020101)
关键词 神经网络 变精度粗集 分类 约简算法 决策属性 Variable precision rough set, Discernibility matrix, Images classification
  • 相关文献

参考文献16

  • 1徐旭东,周源华.基于小波矩不变量的模式识别方法[J].红外与毫米波学报,2000,19(3):215-218. 被引量:26
  • 2Pawlark Z. Rough set-Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordercht, Boston, London.1991
  • 3Skowron A,Rauszer C. The Discernibility Matrix and Function in Information Systems. Intelligent Decision Support-Handbook of Application and Advances of the Rough Sets Theory.In:Sloiniski Red. 1991. 331-362
  • 4Ahlqvist O ,Keukelaar J,Oukbir K .Rough classification and accuracy assessment .Int .J .Geographical information science.2000,14:475-496
  • 5Wang Jue,Wang Ju.Reduction Algorithms Based on Discenibility Matrix:The Ordered Attributes Method . Journal of Computer Science and Technology ,2001,16:489-504
  • 6Cyran K,Mrozek A.Rough Set in Hybrid Methods for Pattern Recognition .International Journal of Intelligent Systems ,2000,15:919-938
  • 7Cyran K,Mrozek A .Rough Set in Hybrid Methods for Pattern Recognition .International Journal of Intelligent Systems ,2001,16:149-168
  • 8Slezak D,Wroblewski J.Classification Algorithm Based on Linear Combination of Feature . In: Proc of PKDD'99 Springer-Verlog 1999. 548-553
  • 9Bell D A, Guan J W .Computational Methods for Rough Classification and Discovery . Journal of the American Society for Information Science ,1998,5:403-414
  • 10Kim D, Bang S-Y .A Handwritten Numeral Character Classification Using Tolerant Rough Set. IEEE Trans on Pattern Analysis and Machine Interence, 2000,22: 923-937

二级参考文献5

  • 1Shen D,Pattern Recognition,1999年,32卷,2期,151页
  • 2Li Y,Pattern Recognition,1992年,25卷,7期,723页
  • 3Khotanzad A,Pattern Recognition,1990年,23卷,10期,1089页
  • 4边肇祺,模式识别,1988年,173页
  • 5Hu M,IRE Trans Inf Theory,1962年,8卷,179页

共引文献25

同被引文献21

  • 1杨慧,陈兰,徐红利.收益管理情境下旅客购票的效用度量函数研究[J].中国管理科学,2013,21(S1):38-42. 被引量:2
  • 2张贤勇,莫智文.变精度粗糙集[J].模式识别与人工智能,2004,17(2):151-155. 被引量:43
  • 3Ziarko W.Variable precision rough set model[J].Computer and System Sciences, 1993,46 ( 1 ) : 39-59.
  • 4刘清.Rough集及Rough推理[M].北京:科学出版社,2001..
  • 5肖文莉,周蓉,王昊.租车行业收益管理研究现状及前景展望[J].物流科技,2007,30(1):80-84. 被引量:5
  • 6CARROLL W J, GRIMES R C. Evolutionary change in product management:Experiences in the car rental industry[J]. Interfaces, 1995,25 (5) :84-104.
  • 7MCGILL J I,VAN R G. Revenue management research overview and prospects[J]. Transportation Science, 1999,33 (2): 233-256.
  • 8LITI3WOOD K. Forecasting and control of passenger bookings[C]//AGIFORS Symposium Proc 12, Nathanya, Israel, 1972: 95-128.
  • 9PETER B. Airline yield management:An overiew of seat inventory control[J]. Transportation Science, 1987,21 (2) :63-73.
  • 10MCGILL J I,BRUMELLE S L Airline seat sllocation with multiple nested fare classes[J]. Operations Research, 1993,41 (1) : 127-137.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部