期刊文献+

纽结补中曲面的分段不可压缩性(英文) 被引量:1

Pairwise Incompressibility of Surfaces in Knot Complements
下载PDF
导出
摘要 讨论了纽结补中的不可压缩、分段不可压缩曲面的性质.设K是S3中素的几乎交错纽结,F是S3-K中的不可压缩、分段不可压缩曲面,那么在F∩S2±中一定存在S2型和PS3型环路.通过研究F∩S2±中的环路性质,证明了对于固定的边界分之数,曲面类是有限(在同痕意义下),同时也证明了如果纽结K是两个排叉结的连通和,则曲面F是穿孔球面. We study the properties of incompressible pairwise incompressible surfaces in knot exteriors. Let K be a prime almost alternating knot in S^3 and let F be an incompressible pairwise incompressible suface in S^3-K .Then there exist loops of type S^2 and of type PS^3 in F∩S^2_± .We prove that there are only finitely many such surfaces in S^3-K with n boundaries components for fixed n by discussing the properties of loops in F∩S^2_± ,and show that F is punctured sphere if K is a connected sum of two pretzel knots.
出处 《辽宁师范大学学报(自然科学版)》 CAS 2004年第1期4-9,共6页 Journal of Liaoning Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10171024) 辽宁师范大学校基金项目
关键词 几乎交错纽结 排叉纽结 分段不可压缩曲面 纽结补 almost alternating knot pretzel knot loop incompressible pairwise incompressible surface.
  • 相关文献

参考文献6

  • 1[1]MENASCO W.Closed incompressible surfaces in alternating knot and link complements[J].Topology, 1984, 23(1):37-41.
  • 2[2]MENASCO W, THISTLETH W M.Surfaces with boundary in alternating knot exteriors[ J].J Reine Angew Maths, 1982,426:47-65.
  • 3[3]MENASCO W.Determining incompressibility of surfaces in alternating knot and link[J].Paci J Math, 1985,117(2) :353-370.
  • 4[4]MENASCO W, THISTLETH W M.Ageometric proof that alternating knots are non-trivial[J].Maths Proc Comb Phil Soci, 1991,109:425-431.
  • 5[5]ADAMS C C, BROCK J F, COMAR T D, et al.Almost alternating links[J] .Topology and its Applications, 1992,46:151-165.
  • 6[6]HAN Y F.Incompressible pairwise incompressible surfaces in almost alternating knot complements[J].Topology and its Applications, 1997,80:239-249.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部