摘要
讨论了纽结补中的不可压缩、分段不可压缩曲面的性质.设K是S3中素的几乎交错纽结,F是S3-K中的不可压缩、分段不可压缩曲面,那么在F∩S2±中一定存在S2型和PS3型环路.通过研究F∩S2±中的环路性质,证明了对于固定的边界分之数,曲面类是有限(在同痕意义下),同时也证明了如果纽结K是两个排叉结的连通和,则曲面F是穿孔球面.
We study the properties of incompressible pairwise incompressible surfaces in knot exteriors. Let K be a prime almost alternating knot in S^3 and let F be an incompressible pairwise incompressible suface in S^3-K .Then there exist loops of type S^2 and of type PS^3 in F∩S^2_± .We prove that there are only finitely many such surfaces in S^3-K with n boundaries components for fixed n by discussing the properties of loops in F∩S^2_± ,and show that F is punctured sphere if K is a connected sum of two pretzel knots.
出处
《辽宁师范大学学报(自然科学版)》
CAS
2004年第1期4-9,共6页
Journal of Liaoning Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(10171024)
辽宁师范大学校基金项目
关键词
几乎交错纽结
排叉纽结
分段不可压缩曲面
纽结补
almost alternating knot
pretzel knot
loop
incompressible pairwise incompressible surface.