期刊文献+

基于系统调用分类的异常检测(英文) 被引量:27

Anomaly Detection Based on System Call Classification
下载PDF
导出
摘要 提出了一种新的基于规则的异常检测模型.把系统调用按照功能和危险程度进行了分类,该模型只是针对每类中关键调用(即危险级别为1的系统调用).在学习过程中,动态地处理每个关键调用,而不是对静态的数据进行数据挖掘或统计,从而可以实现增量学习.同时通过预定义,精炼规则,有效地减少了规则数据库中的规则数目,缩减了检测过程中规则的匹配时间.实验结果清楚地表明,检测模型可以有效侦测出R2L,R2R和L2R型攻击,而且检测出的异常行为将被限制在相应的请求内而不是整个系统调用迹.检测模型适合于针对特权进程(特别是基于请求--反应型的特权进程)的异常入侵检测. The aim of this study is to create a new anomaly detection model based on rules. A detailed classification of the LINUX system calls according to their function and level of threat is presented. The detection model only aims at critical calls (i.e. the threat level 1 calls). In the learning process, the detection model dynamically processes every critical call, but does not use data mining or statistics from static data. Therefore, the increment learning could be implemented. Based on some simple predefined rules and refining, the number of rules in the rule database could be reduced, so that the rule match time can be reduced effectively during detection processing. The experimental results demonstrate that the detection model can detect R2L, R2R and L2R attacks. The detected anomaly is limited in the corresponding requests, but not in the entire trace. The detection model is fit for the privileged processes, especially for those based on request-responses.
出处 《软件学报》 EI CSCD 北大核心 2004年第3期391-403,共13页 Journal of Software
关键词 入侵检测 系统调用 异常检测 分类 Classification (of information) Learning systems Software prototyping
  • 相关文献

参考文献18

  • 1Debar H, Dacier M, Wespi A. Toward a taxonomy of intrusion-detection systems. Computer Networks, 1999,31(8):805-822.
  • 2Ye N, Li XY, Chen Q, Emran SM, Xu MM. Probabilistic techniques for intrusion detection based on computer audit data IEEE Trans. on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2001,31(4):266-274.
  • 3Ko C, Fink G, Levitt K. Automated detection of vulnerabilities in privileged programs byexecution monitoring. In: Proc. of the 10th Annual Computer Security Applications Conf Orlando: IEEE Computer Society Press 1994. 134~144.
  • 4Bernaschi M, Gabrielli E, Mancini LV. REMUS: A security-enhanced operating system. ACM Trans. on Information and System Security, 2002,5(1):36-61.
  • 5Goldberg I, Waqner D, Thomas R, Brewer EA. A secure environment for untrusted helper applications. In: Proc. of the 6th USENIX UNIX Security Symp San Jose: USENIX, 1996. 1-13.
  • 6Marty R. Snort-Lightweight intrusion detection for networks In: Proc. of the 13th Conf. on Systems Administration. Washington:USENIX, 1999.229-238.
  • 7Warrender C, Forrest S, Pearlmutter B. Detecting intrusions using system calls:alternative data models. In: Proc. of the 1999 IEEE Symp. on Security and Privacy. Oakland: IEEE Computer Society Press, 1999. 133~145.
  • 8Hofmeyr SA, Forrest S, Somayaji A. Intrusion detection using sequences of system calls Journal of Computer Security, 1998,6(3):151-180.
  • 9Lee W, Stolfo S J, Chan PK, Eskin E, Fan W, Miller M, Hershkop S, 2hang J. Real time data mining-based intrusion detection. In:Proc. of the 2nd DARPA Information Survivability Conf & Exposition II. Anaheim: IEEE Computer Society Press, 2001.89 ~100.
  • 10Lee SC, Heinbuch DV. Training a neural-network based intrusion detector to recognize novel attacks, IEEE Trans. on Systems,Man, and Cybernetics-Part A: Systems and Humans, 2001,31(4):294-299.

同被引文献396

引证文献27

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部