期刊文献+

强连通竞赛图的圈分解(英文)

Cyclic Partition of Strong Tournaments
下载PDF
导出
摘要 设T为n阶强连通竞赛图.本文通过详细刻画不能进行圈分解的强连通竞赛 图的特征,证明了满足maX{δ+,δ-}>5k-5和k>2的强连通竞赛图T,能够分解为k 个圈. Let T be a strong tournament with n vertices. In this paper, by using a characterization of strong tournaments which can not be vertex partitioned, we show that if T is a strong n-tournament with max{δ+,δ-} > 5k - 5 and k > 2, then T can be partitioned into k cycles.
作者 束金龙 李皓
出处 《运筹学学报》 CSCD 北大核心 2004年第1期53-61,共9页 Operations Research Transactions
基金 The research was partially supported by NNSF of china(19971027,10271048) Shanghai Priority Academic Discipline.The research was done while the first author was visiting LRI.
关键词 强连通竞赛图 圈分解 传递竞赛图 hamiltonian圈 OR, Tournament, Strong Tournament, Transitive Tournament, Almost Transitive Tournament.
  • 相关文献

参考文献6

  • 1J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. Macmillan, London and New York, 1976.
  • 2Guantao Chen, Ronald J. Gould and Hao Li. Partitioning vertices of a tournament into independent cycles. J. Combin. Theory (B), 2001, 83: 213-220.
  • 3Hao Li and Jinlong Shu. The partition of a strong tournament. To appear in Discrete Mathematics.
  • 4Hao Li and Jinlong Shu. Partitioning a strong tournament into k cycles. To appear in ARS Combinatoria.
  • 5K. B. Reid. Two complementary circuits in two-connected tournaments. In "Cycles in Graphs". B.R. Alspach and C.D. Godsil, Eds. Annal of Discrete Math., 1985, 27: 321-334.
  • 6Zengmin Song. Complementary cycles of all lengths in tournaments. J. of Combin. Theory (B), 1993, 57: 18-25.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部