期刊文献+

低氢含量工业纯钛循环变形的微观结构——Ⅰ.γ氢化物附近的晶体旋转及胞结构的形成 被引量:5

MICROSTRUCTURE OF CYCLICALLY DEFORMED TITANIUM WITH LOW HYDROGEN CONCENTRATION I. Crystal Rotation and Formation of Cell Structure Near Hydrides
下载PDF
导出
摘要 对均匀弥散分布着γ氢化物的低氢含量的工业纯钛进行循环疲劳试验,发现在氢化物碎化之前,位错可以穿过氢化物和基体的共格界面,从而使氢化物发生剪切变形,然而在氢化物碎化之后,位错则不能继续穿过界面,而是在界面处缠结,这被归结于由于氢化物尺寸发生变化导致氢化物内部应力降低,氢化物不能继续发生剪切变形所致,透射电镜观察表明,在氢化物的内部至少能激发3套滑移系统,为了协调氢化物和基体之间的不均匀变形,在氢化物和基体内部都发生了晶体旋转,并且氢化物和基体之间的取向关系遭到了破坏,对相应的晶体旋转的机制进行了讨论。 Cyclic testes were conducted on commercially pure titanium with low hydrogen concentration, in which 7 hydrides dispersed homogenously. It was found that dislocations can transfer through the coherent interface only before the hydride was fragmented, after fragmentation, dislocations would tangle at the fragments and do not penetrate the interface again due to the decrease of the maximum stress in the fragments. At least three sets of dislocations can be activated in hydrides during the cyclic deformation. To accommodate the inhomogenous strain between the matrix and hydrides, the crystal rotation occurred in both of them. A mechanism for the crystal rotation has been proposed.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2004年第3期235-240,共6页 Acta Metallurgica Sinica
基金 国家自然科学基金50271075 国家重点基础研究发展规划项目G19990650资助
关键词 纯钛 氢化物 循环形变 位错 晶体旋转 titanium, hydride, cyclic deformation, dislocation, crystal rotation
  • 相关文献

参考文献1

二级参考文献14

  • 1Grange M, Besson, J, Andrieu E. Metall Mater Trans,2000; 31A: 679
  • 2Huez J, Feaugas X, Helbert A L, Guillot I, Clavel M. Metall Mater Trans, 1998; 29A: 1615
  • 3Puls M P. Metall Trans, 1988; 19A: 1507
  • 4Bai J B, Prioul C, Francois D. Metall Mater Trans, 1994;25A: 1185
  • 5Guillot I, Feaugas X, Clavel M. Scr Mater, 2001; 44:1011
  • 6Numakura H, Koiwa M. Acta Metall, 1984; 32:1799
  • 7Woo O T, Weatherly G C, Coleman C E, Gilbert R W.Acta Metall, 1985; 33:1897
  • 8Ahmed J, Wilkison A J, Roberts A G. Philos Mag Lett,1997; 76:237
  • 9Christian J W, Crocker A G. In: Nabarro F R N ed.,Dislocations in Solids, Vol. 6, New York: North-Holland Publishing Company, 1980:229
  • 10Naka S, Lasalmonie A, Costa P, Kubin L. Philos Mag,1988; 57A: 717

共引文献4

同被引文献34

  • 1周伟,曲恒磊,赵永庆,李辉,冯亮,陈军.TC4-DT合金不同热处理后的组织与性能[J].金属热处理,2006,31(6):56-57. 被引量:18
  • 2周磊磊,林大为,周灿栋,王成全,宋洪伟.不同冷却速度下双相不锈钢δ/γ相变过程的原位观察[J].上海金属,2007,29(3):19-23. 被引量:12
  • 3Min. Guo. Hydrogen Embrittlemeut of Titanium ill Seawater under Cathodic Polarization[J]. Dalian University of Technology. 2001. (5): 167-169.
  • 4Tun-Ying Fang, Wen-Hsiung Wang. Microstructural Features of Thermochemical Processing in a Ti-6Al-4V Alloy [J]. Materials Chemistry Physics. 1988, 56: 35-47.
  • 5M. A. Murzinova, G. A. Salishchev, D. D. Afonichev. Formation of Nanocrystalline Structure in Two-Phase Titanium Alloy by Combination of Thermohydrogen Processing with Hot Working [J]. Interllational Journal of Hydrogen Energy. 2002, 27: 775-782.
  • 6Eylon. Method for Developing Ultrafine Microstructures in Titanium Alloy Castings [J]. United States Patent.1986,612(9) :66.
  • 7Shaoqin Zang, Linruo Zhao. E. Efect of Hydrogen on the Superplasticity and Microstructure of Ti-6Al-4V Alloy[J]. Journal of Alloys and Compounds. 1995, 218: 233-236.
  • 8D. Eliezer, N. Eliaz. O. N. Senkov. F. H. Froes. Positive Effects of Hydrogen in Metals [J]. Materials Science and Engineering A. 2000, 280: 220-224.
  • 9Geetha M, Singh A K, Asokanmani R, et al. Ti based biomaterials,the ultimate choice for orthopaedic implants-A review [ J]. Progress inMaterials Science, 2009, 29(3) : 397425.
  • 10Rack H J, Qazi J I. Titanium alloys for biomedical applications [ J]. Materials Science and Engineering C, 2006 , 26(8) : 1269-1277.

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部