期刊文献+

材料非线性粘弹性本构关系的神经网络模拟 被引量:2

SIMULATION OF NONLINEAR VISCOELASTIC CONSTITUTIVE RELATION OF MATERIALS BY NEURAL NETWORK METHOD
下载PDF
导出
摘要 对Green Rivlin非线性粘弹本构方程给出了用一个三层时延前馈神经网络表示的等价关系 ,从而利用该网络可以求解G R方程中的各阶核函数 ,并给出了根据有机玻璃的一组实验数据计算核函数的应用实例 .由此指出神经网络方法可广泛应用于材料本构关系的研究 . Firstly, it is proved that the Green-Rivlin nonlinear viscoelastic constitutive equation can be expressed by a Three-Layer Feedforward Network with Time Delays. Thereby, the network can solve the kernel functions in all orders of the Green-Rivlin equation. Then, an application of computing the kernel functions depending on a group of experimental data of PMMA is conducted,and it is pointed out that the Artificial Neural Network method can be widely used in the study of the constitutive relation of materials.
出处 《固体力学学报》 CAS CSCD 北大核心 2004年第1期71-74,共4页 Chinese Journal of Solid Mechanics
基金 国家 973项目 (G19990 2 2 5 11)资助
关键词 非线性粘弹本构关系 Green-Rivlin方程 神经网络 核函数 时延前馈神经网络 应力张量 固体力学 nonlinear viscoelastic constitutive relation, Green-Rivlin equation, artificial neural network, kernel function
  • 相关文献

参考文献5

  • 1Lockett F J.Nonlinear Viscoelastic Solids.London:Academic Press,1972
  • 2Green A E,Rivlin R S.The mechanics of nonlinear materials with memory,Part I Arch Rat Mech Anal,1957,1:1-21
  • 3Chen Tianping et al.Universal approximation to nonlinear operators by NN with arbitrary activation functions and its application to dynamical systems.IEEE Trans NN,1995,6:911-917
  • 4Wray et al.Calculation of the Volterra kernel of non-linear dynamic systems using an artifical neural network.Biol Cybern,1994,71:187-195
  • 5Marmarelis V Z et al.Volterra models and the three-layer perceptron.IEEE Trans NN,1997,8:1421-1433

共引文献1

同被引文献13

  • 1涂帆,常方强.BP神经网络预测水泥搅拌桩单桩承载力[J].华侨大学学报(自然科学版),2007,28(1):68-70. 被引量:4
  • 2孟文清,焦健,张亚鹏.基于BP神经网络的CFG桩辅助设计的研究[J].山西建筑,2007,33(9):3-4. 被引量:2
  • 3Tarantola A. Inverse Problem Theory[M]. Amsterdam : Elsevier Science Publishers, 1988.
  • 4Wang J T, Ding M Y. Inverse Problems in Modeling the Constitutive Relations of Rock and Soil[C]. Proceeding of the Tenth International Conference on Computer Methods and Advances in eomechanics, Tucson/Arizona/USA, Janpan, 2001, 413-416.
  • 5Ellis G W,Yao C,Zhao R,et al. Stress-strain Modeling of Sands Using Artificial Neural Networks[J]. Journal of Geotechnical Engineering, 1995, 121(5): 429-435.
  • 6Penumadu D, Zhao R. Triaxial compression behavior of sand and gravel using artificial neural networks (ANN)[J]. Computers and Geotechnics, 1999, 24: 207-230.
  • 7Ghaboussi J, Jr Garrett J H, Wu X. Knowledgebased modeling of material behavior with neural networks[J]. Journal of Engineering Mechanics, ASCE, 1991, 117(1): 132-153.
  • 8Hech-Nielsen R. Euro Computing[M]. New York: Addison Wesley Publishing Company, 1990.
  • 9蒋建平,高广运,章杨松.基于现场试验的桩身总侧阻力达到极限后的退化[J].岩石力学与工程学报,2008,27(3):633-642. 被引量:13
  • 10孟庆峰,程永舟,胡旭跃,莫静琳,戴玉婷.基于BP神经网络的冲积河床桥墩局部冲刷深度预测模型[J].水运工程,2008(7):39-43. 被引量:5

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部