期刊文献+

基于神经网络与遗传算法的纹理图像分割 被引量:2

Segmentation of Texture Image Using Neural Network and Genetic Algorithms
下载PDF
导出
摘要 运用两维自动回归模型、分形维数、均值和方差从每一小区域的数据中抽取纹理特征 ,把纹理特征作为自组织特征映射神经网络的输入层进行训练确定最优的纹理区域分割数 ,最后运用遗传算法优化图像分割。 Texture features are extracted from the data in each small region by using two dimensional autoregressive model, fractal dimension, mean and variance of the pixel data. These texture features are considered as the input layer of self organizing feature map, then the optimum number of segmentation areas are confirmed by training the neural network. Finally using GAs optimizes image segmentation. The results show the method can implement texture image segmentation effectively.
出处 《武汉理工大学学报》 CAS CSCD 2004年第3期86-87,93,共3页 Journal of Wuhan University of Technology
关键词 神经网络 遗传算法 图像分割 纹理特征 neural network genetic algorithms image segmentation texture feature
  • 相关文献

参考文献4

  • 1Holland J Ⅱ. Genetic Algorithms and the Optimal Allocations of Trials[J]. SIAM J Comput, 1973, 2(2):43~46.
  • 2Motohide Yoshimura, Shunichiro Oe. Evolutionary Segmentation of Texture Image Using Genetic Algorithms Towards Aautomatic Decision of Optimum Number of Segmentation Areas[J]. Pattern Recognition,1999,32:2041~2054.
  • 3Pentlend P. Fractal-based Description of Natural Scenes[J]. IEEE Trans on PAMI,1984,6(6):661~674.
  • 4阎平凡 张长水.人工神经网络与模拟进化计算[M].清华大学出版社,2002.3.

共引文献8

同被引文献22

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部