摘要
根据土体中平衡微分方程及连续性方程,结合边界条件及初始条件,应用无网格伽辽金法推导出土体二维Biot固结的系统方程并编制了相应的无网格程序。该法基于特定影响域中的一系列随机分布的结点,采用移动最小二乘法进行多项式插值构造形函数,同时,采用罚函数法处理本质边界条件,应用Crank-Nicolson积分方案对时间域进行离散。最后,通过一算例与其理论上精确解及有限元结果相比较,说明了该法的精确性和可行性。
The system equation for 2D soil consolidation is given and the corresponding program is developed with element-free Galerkin method based on the equilibrium differential equation and the continuous equation of soil,combined with the initial and boundary conditions. In addition,the essential boundary conditions are enforced with penalty method. This method forms the shape functions using the moving least-squares(MLS) polynomial interpolation grounded on a set of arbitrarily distributed points in an influencing domain. Time discretization adopts the Crank-Nicolson integral scheme. The accuracy and feasibility of the EFG method for consolidation problem are verified by comparing the calculation results of a numerical example with those from the analytical method and FEM.
出处
《岩石力学与工程学报》
EI
CAS
CSCD
北大核心
2004年第7期1141-1145,共5页
Chinese Journal of Rock Mechanics and Engineering
关键词
土力学
BIOT固结
无单元伽辽金法
多项式插值
孔隙水压力
沉降
soil mechanics,Biot consolidation,element-free Galerkin method,polynomial interpolation,pore water pressure,settlement