期刊文献+

抽象同伦范畴中的局部化

LOCALIZATION FUNCTORS IN ABSTRACT HOMOTOPY CATEGORIES
下载PDF
导出
摘要 在抽象同伦范畴中给出了一个局部化函子的存在定理:设C为抽象同伦范畴,S为C中的态类,若(1)存在关于S的左分数范畴;(2)任给si:Xi→Yi(i∈Λ)属于S,有∨si:∨Xi→∨Yi属于S.这里Λ为任一指标集;则存在C上的幂等对(E,η),使得SE=S⊥⊥且DE=S⊥. A sufficient condition for the existence of idempotent functors in abstract homotopy categories is given. That is: for abstract homotopy categories C, and some class S of morphisms, if(1) there exists a category of left fractions with respect to S; (2) if s_i:X_i→Y_i lies in S for all i∈Λ (here Λ is a set of index), the ∨s_i:∨X_i→∨X_i→∨Y_i lies in S; then there is an idempotent functor (E,η) in C, such that S_E=S^(⊥⊥) and D_E=S^(⊥).
出处 《华南师范大学学报(自然科学版)》 CAS 2004年第1期20-25,共6页 Journal of South China Normal University(Natural Science Edition)
关键词 抽象同伦范畴 局部化 幂等对 左分数范畴 localization functors abstract homotopy categories idempotent functors
  • 相关文献

参考文献8

  • 1沈文淮,易建新,丁鹏,代雄平.Adams完备化与局部化的等价性[J].Journal of Mathematical Research and Exposition,1997,17(2):243-246. 被引量:1
  • 2易建新.弱上极限及其性质[J].华南师范大学学报(自然科学版),2000,32(3):16-20. 被引量:1
  • 3ADAMS J F. Idempotent fimctors in homotopy theory[A]. In: Proe Geometry Conf[ C ]. Tokyo:Spring, 1973:247 -253.
  • 4DELEANU A. Existence of the Adams completion for objects of cocomplete categories[J]. J of Pure and Appl Algebra, 1973,6:31 - 39.
  • 5CASACUBERTA C, PESCHK G, PFENNIGER M. On orthogonal pairs in categories and localization[A]. In: London Math Soc Lecture Note Ser, Vol 86[M]. Cambridge: Cambridge University Press, 1983:154- 163.
  • 6POPESCU N, POPESCU L. Theory of Categories [ M]. Bucharest: Sijthoff & Noordhoff International Publishers, 1979:20 - 50.
  • 7BROWN E H Jr. Abstract homotopy theory[J]. Trans Amer Math Soc,1965,119:79- 85.
  • 8DELEANU A. Existenee of the Adams completion for CW- complexes[J]. J of Pure and Appl Algebra, 1974,4:299- 308.

二级参考文献5

  • 1 Edwin H Spanier. Algebraic Topology [M]. New York:Springer-Verlag, 1966. 406~407.
  • 2 E H Brown. Abstract homotopy theory [J]. Trans Amer Math Soc, 1965, 119: 79~85.
  • 3 N Popescu, L Popescu. Theory of Categories [M]. Bucharest: Sijthoff &Noordhoff International Publishers, 1979. 2~20.
  • 4 B Mitchell. Theory of Categories [M]. New York and London: Academic Press,1965. 10~20.
  • 5 S MacLane. Categories for the working Mathematician [M]. New York:Springer-Verlag, 1971. 55~68.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部