期刊文献+

Generalized Toda Mechanics Associated with Classical Lie Algebras and Their Reductions 被引量:1

Generalized Toda Mechanics Associated with Classical Lie Algebras and Their Reductions
下载PDF
导出
摘要 For any classical Lie algebra , we construct a family of integrable generalizations of Toda mechanics labeled a pair of ordered integers . The universal form of the Lax pair, equations of motion, Hamiltonian as well as Poisson brackets are provided, and explicit examples for with are also given. For all , it is shown that the dynamics of the - and the -Toda chains are natural reductions of that of the -chain, and for , there is also a family of symmetrically reduced Toda systems, the -Toda systems, which are also integrable. In the quantum case, all -Toda systems with 1$' SRC='http://ej.iop.org/images/0253-6102/41/3/339/ctp_41_3_339_12.gif'/> or 1$' SRC='http://ej.iop.org/images/0253-6102/41/3/339/ctp_41_3_339_13.gif'/> describe the dynamics of standard Toda variables coupled to noncommutative variables. Except for the symmetrically reduced cases, the integrability for all -Toda systems survive after quantization.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第3期339-348,共10页 理论物理通讯(英文版)
基金 The project supported in part by National Natural Science Foundation of China
关键词 Lax pair Poisson brackets Toda chains 经典李代数 泊松算法 Toda链 松弛对 哈密顿系统
  • 相关文献

参考文献28

  • 1[1]P. Calogero, "Classical Many-Body Systems Ameanable to Exact Treatment", Lecture Notes in Physica, Vol. 66,Springer-Verlag (2001).
  • 2[2]M. Toda, J. Phys. Soc. Jpn. 23 (1967) 501.
  • 3[3]M. Toda, Theory of Nonlinear Lattice, Springer-Verlag,(1982).
  • 4[4]O.A. Castro-Alvaredo and A. Fring, arXiv:hep-th/0301102.
  • 5[5]V.D. Ivashchuk, Class. Quant. Gray. 20 (2003) 261.
  • 6[6]S.V. Ketov, arXiv:hep-th/0010255.
  • 7[7]S. Kharchev and D. Lebedev, J. Phys. A34 (2001) 2247.
  • 8[8]H. Flaschda, Phys. Rev. B9 (1974) 1924.
  • 9[9]H. Flaschda, Prog. Theor. Phys. 51 (1974) 703.
  • 10[10]K.S. Nirov and A.V. Razumov, arXiv:hep-th/0210136.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部