期刊文献+

Projection Operator and Feynman Propagator for a Free Massive Particle of Arbitrary Spin

Projection Operator and Feynman Propagator for a Free Massive Particle of Arbitrary Spin
下载PDF
导出
摘要 Based on the solution to the Bargmann Wigner equations, a direct derivation of the projection operator and Feynman propagator for a free massive particle of arbitrary spin is worked out. The projection operator constructed by Behrends and Fronsdal is re-deduced and confirmed, and simplified in the case of half-integral spin, the general commutation rules and Feynman propagator with additional non-covariant terms for a free massive particle with any spin are derived, and explicit expressions for the propagators for spins 3/2, 2, 5/2, 3, 7/2, and 4 are provided.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第3期405-418,共14页 理论物理通讯(英文版)
基金 The project supported partially by National Natural Science Foundation of China under Grant Nos.19947001,90103010,and 19991480 the Foundation of National Key Program for Basic Research of China under Grant No.2001CCB01000 the Doctoral Program Foundation
关键词 free massive particle arbitrary spin projection operator Feynman propagator 投影算子 费曼分布函数 随机旋转 Bargmann-Wigner方程 数学物理方法
  • 相关文献

参考文献10

  • 1[1]S.U. Chung, Phys. Rev. D57 (1998) 431.
  • 2[2]S.U. Chung, Phys. Rev. D48 (1993) 1225
  • 3[3]S.U. Chung, et al., Phys. Rev. D65 (2002) 072001.
  • 4[4]V. Filippini, A. Fontana, and A. Rotondi, Phys. Rev. D51(1995) 2247.
  • 5[5]S. Huang, T. Ruan, N. Wu, and Z. Zheng, Commun.Theor. Phys. Beijing, China) 37 (2002) 63.
  • 6[6]V. Bargmann and E.P. Wigner, Proc. Nat. Acad. Sci.(USA) 34 (1948) 211.
  • 7[7]R.E. Behrends and C. Fronsdal, Phys. Rev. 106 (1957)345.
  • 8[8]C. Fronsdal, Nuovo Cimento Suppl. 9 (1958) 4161.
  • 9[9]P.R. Auvil and J.J. Brehm, Phys. Rev. 145 (1966) 1152.
  • 10[10]D. Lurie, Particles and Fields, John Wiley & Sons, NY(1968) 143.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部