期刊文献+

(2+1)维长-短波方程的李代数结构及其可积性

THE LIE ALGEBRAIC STRUCTURES AND THE INTEGRABILITY OF LONG-SHORT WAVES EQUATIONS IN (2+1) DIMENSIONS
下载PDF
导出
摘要 延拓方法讨论了 ( 2 + 1 )维长 -短波方程 ( Long-Short Wave Equation)的隐对称结构 ,导出了它的无限维李代数表示及其线性谱表示 ,从而给出它的可积性一般证明 . The hidden symmetry and the intergability of long waves equation in (2+1) dimensions are considered by a prolongation approach. The internal algebraic structures and their linear spectra are derived in detail theoretically. Moreover, an auto Backlund transformation of the equation is also obtained from a Lie algebra's realization of the prolongation structures.
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第1期97-101,共5页 Acta Scientiarum Naturalium Universitatis Nankaiensis
基金 国家自然科学基金资助项目( 1 91 5 5 0 0 1 ) 河南省自然科学基金资助项目
关键词 延拓方法 隐对称结构 可积性 prolongation approach hidden symmetry integrability
  • 相关文献

参考文献9

  • 1Wahlquist D H, Estabrook F B. Prolongation struetres of nonlinear evalution equation [J]. J Math Phys, 1975,16:1-8.
  • 2Morris H C. Scalar potentials in the Dirac equation[J]. J Math Phys, 1976, 17;261-268.
  • 3ZHAO X Q, LU J F. On integrability and algebraic structures of a coupled dispersionless equation[J]. J Phys Soc Japan, 1999, 68:12-15.
  • 4Yajima, Oikawa M. Formation and interaction of Sonic-Longmulnir solitons[J]. Proc theor Phys, 1976,56:1719-1723.
  • 5Ma Y C. the solitons of short-long interaction wave equations[J]. Studies of Appl Math, 1978,59:201-205.
  • 6Ma Y C, Rederopp L G. The solutions of short-Long interaction Wave equations by inverse scattering methods[J].Phys Fluids, 1979,22:1572-1580.
  • 7Funakoshi M, Oikowa M. the resonant interactions betweeh a long internal Gravity wave[J]. J Phys Soc Japan,1983,52: 1982- 1987.
  • 8Oikawa M, Okamura M, Funakoshi. Two-dimensional resonant interaction between Long-short waves[J]. J Phys Soc Japan, 1989,58:4416-4420.
  • 9Derek Lai W C, Chow K W. The positon and dromion type solutions of LSWE in two space dimensions[J]. J Phys Soc Japan, 1999,68:1847-1849.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部