期刊文献+

一个与比值有关的三级食物链反应扩散模型的定性分析 被引量:5

Qualitative analysis on a ratio-dependent food chain diffusion model
下载PDF
导出
摘要 与许多生物学家所研究的生物学中响应函数依赖于食物与猎物的密度比的三级食物链模型(常见的为常微分方程模型)不同,研究了食物与猎物非齐次分布、带有齐次Neumann边界条件的偏微分方程,给出了这种反应扩散方程的耗散性。 Ratio-dependent predator-prey models are favored by many animal ecologists recently. The present paper deals with the case where densities of preys and predators are spatially inhomogeneous in a bounded domain subject to the homogeneous Neumann boundary condition. The main purpose is to study the qualitative properties of solutions to this reaction-diffusion (partial differential) system. As a result, dissipation, persistence and stability are established.
机构地区 东南大学数学系
出处 《江苏大学学报(自然科学版)》 EI CAS 2004年第2期137-140,共4页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(10171088)
关键词 偏微分方程 三级食物链 反应扩散模型 耗散性 持久性 稳定性 partial differential equation food chain model ratio-dependent dissipation persistence stability
  • 相关文献

参考文献3

  • 1[1]Hsu Sze-Bi, Hwang Tzy-Wei, Kuang Yang. A ratio-dependent food chain model and its applications to biological control[J].Mathematical Biosciences,2003,181:55-83.
  • 2[2]Henry D. Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics[M]. Berlin-New York:Springer-Verlag, 1993.
  • 3[3]Pang P Y H, WANG Ming-xin. Qualitative analysis of a ratio-dependent predator-prey system with diffusion[J]. Proc Royal Soc of Edinburgh A, 2003,133(4):919-942.

同被引文献24

  • 1聂益民.一类食饵种群具有收获率的HollingⅡ类功能反应生态系统的定性分析[J].陕西师范大学学报(自然科学版),2001,29(S1):1-5. 被引量:11
  • 2李建民.捕食-被捕食同时进行捕获具有第Ⅱ类功能性反应系统的定性分析[J].河南大学学报(自然科学版),2004,34(3):12-15. 被引量:5
  • 3李医民,周燕.一类具有收获系数的单种群模型的混沌分析[J].江苏大学学报(自然科学版),2005,26(4):324-327. 被引量:5
  • 4Sherratt J.Periodic Traveling Waves in Cyclic Predator-prey Systems[J].Ecol Lett,2001(4):30-37.
  • 5Yuan Guangwei,Shen Longjun,Zhou Yulin.Unconditional Stablility of Parallel Alternating Difference Schemes for Semilinear Parabolic Systems[J].Appl Math Comput,2001,117:267-283.
  • 6Zhang Lingyun,Sun Zhizhong.A Second-order Linearized Difference Scheme on Nonuiform Meshes for Nonlinear Parabolic Systems with Dirichlet Boundary Value Conditions[J].Numer Meth Partial Differential Eqs,2003,19:638-652.
  • 7Zhang Xiaoying, Shuai Zhisheng, Wang Ke. Optimal im pulsive harvesting for single population [ J ]. Nonlinear Analysis ,2003 (4) :639 - 651.
  • 8Fan Meng, Wang Ke. Optimal harvesting policy for single population with coefficients [ J ]. Mathematical Periodic Biosciences, 1998,1 (52) :165 - 177.
  • 9Li T Y, Yorke J A. Period three implies chaos[J]. Am Math Mon, 1977,54:237 -247.
  • 10孙志忠.偏微分方程数值解[M].北京:科学出版社.2004.

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部