摘要
与许多生物学家所研究的生物学中响应函数依赖于食物与猎物的密度比的三级食物链模型(常见的为常微分方程模型)不同,研究了食物与猎物非齐次分布、带有齐次Neumann边界条件的偏微分方程,给出了这种反应扩散方程的耗散性。
Ratio-dependent predator-prey models are favored by many animal ecologists recently. The present paper deals with the case where densities of preys and predators are spatially inhomogeneous in a bounded domain subject to the homogeneous Neumann boundary condition. The main purpose is to study the qualitative properties of solutions to this reaction-diffusion (partial differential) system. As a result, dissipation, persistence and stability are established.
出处
《江苏大学学报(自然科学版)》
EI
CAS
2004年第2期137-140,共4页
Journal of Jiangsu University:Natural Science Edition
基金
国家自然科学基金资助项目(10171088)
关键词
偏微分方程
三级食物链
反应扩散模型
耗散性
持久性
稳定性
partial differential equation
food chain model
ratio-dependent
dissipation
persistence
stability