期刊文献+

色散缓变光纤中孤子的相互作用 被引量:1

Interaction Between Solitons in Dispersion-decreasing Fiber
原文传递
导出
摘要 以非线性薛定谔方程为理论依据,应用对称傅立叶变换,采用MATLAB编程,对色散缓变光纤(DDF)中孤子间相互作用进行了理论模拟,并与普通光纤进行了比较。研究发现,当孤子间初始间距q0=3时,DDF中孤子间无相互作用,而普通光纤中存在强相互作用;DDF中直到q0=2时孤子间才出现明显的相互作用。结果表明,DDF中的传输比特率比普通光纤中的大;改变两孤子的初始相对相位或振幅,可以减小孤子间的相互作用。 By non-linear Schrdinger equation,soliton interaction in decreasing-dispersion fiber(DDF) was simulated using split-step Fourier transformation and Matlab program.The results are compared with the soliton interaction in common fiber.When the initial time interval q_0=3,no interaction between solitons in DDF,but there is a strong interaction in common fiber.Till q_0=2,the significant interaction occurs in DDF.This results shows that the transportation bit rate is greater in DDF than in common fiber.For DDF or common fiber,by changing the initial relative phase or amplitude,the soliton interaction can be decreased.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2004年第4期495-498,共4页 Journal of Optoelectronics·Laser
关键词 色散缓变光纤 孤子 非线性薛定谔方程 分裂步长傅立叶变换 DDF 传输比特率 dispersion-decreasing fiber(DDF) nonlinear Schrdinger equation split-step Fourier transform soliton interaction
  • 相关文献

参考文献11

  • 1[1]G P Agrawal.Nonlinear fiber optics[M].Boston:Academic,1989.
  • 2[2]Y Kodama,K Nozaki.Soliton interaction on optical fibers[J].Opt.Lett.,1987,12(12):1038-1040.
  • 3[3]M G da Sliva,K Z No′brega,A S B Sombra.Analysis of soliton switching in dispersion-decreasing fiber couplers[J].Optics Communications,1999,171:351-364.
  • 4[4]Masataka Nakazawa, Kszunori Suzuki, Hirokazu Kubota,et al.Dynamic optical siliton communication[J].IEEE J.Q.E.,1990,26(12):2095-2101.
  • 5[5]Masataka Nakazawa,Yasuo Kimura,Kazunori Suzuki,et al.Wavelength multiple soliton amplification and transmission with an Er3+-doped optical fiber[J].J.Appl.Phys.,1989,66(7):2803-2812.
  • 6[6]De Angelis,P Franco,M Romagnoli.Vector-soliton ineraction induced depolarization[J].Optics Communications1998,157:161-164.
  • 7[7]K Tajima.Compensation of soliton broadening in nonlinear optical fibers with loss[J].Opt.Lett.,1987,12(1):54-56.
  • 8[8]Wen Shuangchun,Xu Wengcheng,Guo Qi,et al.Evolution of soliton of nonlinear Schrdinger equation with variable parameters[J].Science in China seris A Mathematics,Physics,Astronomy.1997,40(12):1300-1304.
  • 9[9]YANG Ai-ling,WANG Sing,MIAO Hong-li,et al.Modulation instability of cross-phase modulation in decreasing dispersion fibers[J].J.of Optoelectronics·Laser(光电子·激光),2002,13(8):810-813.(in Chinese)
  • 10[10]WANG Jing,WANG Jiu,GU Zhi-dan.Study on pulse width in dispersion-decreasing faber[J].J.of Optoelectronics·Laser(光电子·激光),2003,14(6):636-638.(in Chinese)

同被引文献5

  • 1徐铭,吉建华,杨淑雯,杨祥林.色散控制孤子系统的应用设计研究[J].光电子.激光,2004,15(7):818-822. 被引量:3
  • 2Agrawal G P.Nonlinear Fiber Olptics[M].New York:Academic,1995.48-49.
  • 3Hasegawa A, Matsumoto M. Optical Solitons in Fibers[M].San Diego:Springer Series in Photonics,2002.144-145.
  • 4Nicholas J Smith,Nicholas Doran,Wladek Forysiak,et al.Soliton transmission using periodic dispersion compensation[J].J Lightwave Technol,1997,15:1808-1822.
  • 5Ekaterina Poutrina,Agrawal G P.Timing jitter in dispersion-managed soliton systems with distributed,lumped,and hybrid amplification[J].J Lightwave Technol,2002,20(5):790-797.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部