期刊文献+

基于Pareto Front的多目标遗传算法 被引量:25

Muoti Objective Genetic Algorithm Baesd on Pareto Front
下载PDF
导出
摘要  多目标优化是非常重要的研究课题,基于ParetoOptimum的多目标遗传算法非常适合于求解多目标优化问题.本文讨论了不带参数的多目标遗传算法,提出了用排除的方法来构造进化群体的非支配集,同时给出了新群体的构造方法.实验结果表明,本文所讨论的方法比较国际上已有的方法具有更快的收敛速度. The Multi-objective Optimum is a very important research topic, and the Multi-objective Genetic Algorithm based on Pareto Optimum is much suitable for solving these problems. In this paper, the multi-objective genetic algorithm with no parameter is discussed, and an algorithm to construct non-dominated set of evolutionary population is put forward by removing the dominated individuals, and then the method of constructing new evolutionary population is presented at the same time. It is shown by experimental results that the convergent speed of the method discussed in this paper is faster than others.
出处 《湘潭大学自然科学学报》 CAS CSCD 2004年第1期39-41,48,共4页 Natural Science Journal of Xiangtan University
基金 湖南省自科基金资助(01JJY2060) 湖南省教育厅项目资助(00C088)
关键词 进化计算 多目标优化 多目标遗传算法 Evolutionary Computing, Multi-objective Optimum, Multi-objective Genetic Algorithm
  • 相关文献

参考文献8

  • 1Kuhn H W, Tucker A W. Nonlinear programming[ C]. In j Neyman editor Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, Califomia: University of Califomia Press, 1951:481 - 192.
  • 2Schaffer J D. Some experiments in machine learning using vector evaluated genetic algorithms[ C]. Unpublished doctoral dissertation, Vanderbilt University, 1984.
  • 3Zilzler E,Thiele L. Multi - objective optimization using evolutionary algorithms - A comparative case study[C]. Parallel Problem Solving from Nature, Springer, Berlin: 1984:292 - 301.
  • 4Deb K, Agrawal S, Pratap A,et al. A Fast Elitist Non - Dominated Sorting Genetic Algorithm for Multi - Objective Optimization: NSGA - Ⅱ .Technical Report No 2000001. Kanpur: Indian Institute of Technology Kanpur, 2000.
  • 5Kuhn H W,Tucker A W. Nonlinear programming[C]. In J Neyman editor Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, California:University of California Press,1951:481-192.
  • 6Schaffer J D.Some experiments in machine learning using vector evaluated genetic algorithms[C].Unpublished doctoral dissertation, Vanderbilt University,1984.
  • 7Zilzler E,Thiele L.Multi-objective optimization using evolutionary algorithms-A comparative case study[C].Parallel Problem Solving from Nature,Springer,Berlin:1984:292-301.
  • 8Deb K, Agrawal S, Pratap A,et al.A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-Ⅱ.Technical Report No.2000001.Kanpur:Indian Institute of Technology Kanpur,2000.

同被引文献204

引证文献25

二级引证文献129

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部