期刊文献+

σ半凸性与Ekeland变分原理 被引量:4

σ-Semi-Convexity and Ekeland's Variational Principle
原文传递
导出
摘要 本文引进了σ半凸性,并给出了局部凸空间中一般的Ekeland变分原理. In this paper, the σ-semi-convexity is introduced and a general Ekeland's variational principle in locally convex spaces is given.
作者 丘京辉
机构地区 苏州大学数学系
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2004年第2期251-258,共8页 Acta Mathematica Sinica:Chinese Series
关键词 局部凸空间 σ半凸性 EKELAND变分原理 Locally convex spaces σ-semi-convexity Ekeland's variational principle
  • 相关文献

参考文献12

  • 1Ekeland I., On the variational principle, J. Math. Anal. Appl., 1974, 47: 324-353.
  • 2Phelps R. R., Convex Functions, Montone operators and differentiability, Berlin, Heidelberg: Springer-Verlag,1989.
  • 3Horvath J., Topological vector spaces and distributions, Massachusetts: Addison-Wesley, 1966.
  • 4Zeidler E., Nonlinear functional analysis and its applications Ⅲ, variational methods and optimization, New York: Springer-Verlag, 1985.
  • 5Perez Carreras P., Bonet J., Barrelled locally convex spaces, Amstrdam: North-Holland, 1987.
  • 6Qiu J. H., Local completeness and dual local quasi-completeness, Proc. Amer. Maih. Soc., 2001, 129:1419-1425.
  • 7Saxon S. A., Sanchez Ruiz L. M., Dual local completeness, Proc. Amer. Math. Soc., 1997, 125: 1063-1070.
  • 8Rode G., Superkonvexe analysis, Arch. Math., 1980, 34: 452-462.
  • 9Kgnig H., Theory and applications of superconvex spaces, In: Aspects of Positivity in Functional Analysis(eds. Nagel R., Schlotterbeck U., Wolff M. P. H.), Amsterdam: North-Holland, 1986, 79-118.
  • 10Konig H., wittstock G., Superconvex sets and σ-convex sets, and the embedding of convex and superconvex spaces, Note Matematica, 1990, 10: 343-362.

同被引文献27

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部