期刊文献+

基于径向基函数神经网络的并联机器人运动学正问题 被引量:13

Direct Kinematic Problem Based on RBFNN of Parallel Manipulator
下载PDF
导出
摘要 以一般形式的Stewart型并联机器人为例,由机器人的位置反解问题引出机器人运动学正解问题,在分析BP网络与径向基函数网络的特点基础上,采用基于径向基函数神经网络的算法,利用最近邻聚类方法获得径向基函数中心,求解并联机器人运动学正解问题·通过对训练样本的学习,确定神经网络权系数,能够准确地求解并联机器人的位置和姿态,算法具有运算简单,求解效果好等特点·同Newton Raphson算法比较,能获得相同的效果且位置和姿态误差近似恒定,而神经网络算法避免迭代初值及额定循环次数的影响·因此该方法可作为并联机构系统运动学轨迹跟踪控制的运动学模型辨识器· The kinematic model of paraller manipulators presents an inherent complexity due to their closed-loop structure and kinematic constraints and, correspondingly, the algorithm for the solution to relavant direct kinematic problems is complex. An algorithm of RBFNN for kinematic problems is thus presented in a nearest neighbor-clustering way to solve simply the positions and orientations of Stewart platform with needed precision, of which the process of solution is simple with good result provided. Comparing with the Newton-Raphson algorithm, the errors of neural network are appproximatively invariable without the effects of initial values and rated number of cycles on them. The results show that this approach can be used for the in-line control of parallel manipulators.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第4期386-389,共4页 Journal of Northeastern University(Natural Science)
基金 辽宁省普通高校优秀青年骨干教师基金资助项目.
关键词 径向基函数 神经网络 运动学正解 并联机器人 最近邻聚类法 radial basic function(RBF) neural network direct kinematic problem parallel manipulator nearest neighbor-clustering algorithm
  • 相关文献

参考文献7

  • 1[4]Dasgupta B, Mruthyunjaya T S.The Stewart plat-form manipulator: a review[J]. Mechanism and Machine Theory, 2000,35(1):15-40.
  • 2[5]Gosselin C. Parallel computational algorithms for the kinematics and dynamics of planar and spatial parallel manipulators[J]. ASME J of Dynamic Systems, Measurement and Control, 1996,118(1):22-28.
  • 3[6]Geng Z, Haynes L. Neural network solution for the forward kinematics problem of a Stewart platform[A]. International Conference on Robotics and Automation,Proceedings of the IEEE[C]. Automn, 1991.2650-2655.
  • 4[7]Boudreau R, Tukkan N. Solving the forward kinematics of parallel manipulators with a genetic algorithm[J]. Journal of Robotic System, 1996,13(2):111-125.
  • 5[8]Han K Y, Hung, Youm W Y. New resolution scheme of the forward kinematics of parallel manipulators using extra sensors[J]. Transactions of the ASME J of Mech Design, 1996,118(2):214-219.
  • 6[9]Bonev I A, Ryu J. A new method for solving the direct kinematics of general 6-6 Stewart platform using three linear extra sensors[J]. Mechanism and Machine Theory, 2000,35(1):423-436.
  • 7[10]Dasgupta B, Choudhury P. A general strategy based on the Newton-Euler approach for the dynamic formulation of parallel manipulators[J]. Mechanism and Machine Theory, 1999,34(6):801-824.

同被引文献151

引证文献13

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部