期刊文献+

水工弧形钢闸门振动的负阻尼 被引量:2

Negative Damping Ratio Due to Tainter Gate Vibration
下载PDF
导出
摘要 引入了弧形闸门小开度切向振动时因流量随时变化产生的水力负阻尼的表达式,定义了因压杆纵向恒定力及交变力引起的参数共振相应的负阻尼·对弧门振动的不同情况简化为两端铰支承和一端铰支一端弹性支承两种端点条件不同的压杆,并给出了相应的第一欧拉临界力的计算式·由动力方程给出了杆端纵向力的近似算式,根据实验资料给出了作用在支铰上的脉动压力的参考值,为讨论可能出现动力失稳的典型情况奠定了基础· A hydraulic expression of negative damping ratio of a tainter gate when a tangential vibration resulting from changing waterflow takes place on such a rigid body is introduced to define the negative damping ratio corresponding to the parametric resonance condition caused by the longitudinal constant force of compressional members and alternating force. Various types of vibration of the tainter gate are simplified into two kinds of compressional members, i.e., two simply supported ends and one simply supported end with one elastically supported end, and the relevant formula of Euler critical load of 1st kind is given. A formula of longitudinal force at member end is thus given approximately through kinetic equation. The reference values of pulsating pressure acting on supporting hinges are also given according to experiments, which will lay a foundation for discussing further the typical case of dynamic instability.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第4期394-397,共4页 Journal of Northeastern University(Natural Science)
基金 辽宁省自然科学基金资助项目(20021008).
关键词 弧形闸门 负阻尼 参数共振 自激振动 临界欧拉力 定量估算 tainter gate negative damping ratio parametric resonance self-induced vibration Euler critical load quantitative estimation
  • 相关文献

参考文献6

  • 1[6]Ishii N, Imaichi K, Hirose A. Dynamic instability of tainter-gates[A]. Naudascher E,Rockwell D eds. Practical Experiences with Flow-Induced Vibrations[C]. Berlin: Springer-Verlag, 1980.452-460.
  • 2[7]Ishii N, Naudascher E. A design criterion for dynamic stability of tainter gates[J]. J Fluids and Structures, 1992,6:67-84.
  • 3[8]Jongeling T H G. Flow-induced self-excited in-flow vibrations of gate plates[J]. J Fluids and Structures, 1988,(2):541-566
  • 4[9]Ishii N, Knisely C W, Nakata A. Coupled-mode vibration of gates with simulataneous over and underflow[J]. J Fluids and Structures, 1994,(8):455-469
  • 5[10]Ishii N, Knisely C W, Nakata A. Field study of a long-span shell-type gate undergoing flow-induced vibrations[J]. J Fluids and Structures, 1995,(9):19-41.
  • 6[14]Den Hartog J P. Mechanical vibrations[M]. NewYork: Mc Graw-Hill ,1956.311-350.

同被引文献18

  • 1刘永胜,严根华,赵建平.电站进水口快速闸门振动特性研究[J].固体力学学报,2011,32(S1):382-387. 被引量:6
  • 2谌磊,王正中,庞金城.弧形钢闸门的动力稳定分析[J].人民黄河,2006,28(7):53-54. 被引量:4
  • 3阎诗武.脉动与振动[M]..泄水工程水力学.长春:吉林科学技术出版社,2002.201-207.
  • 4HARDWICK J D.Flow-induced vibration of vertical-lift gate[J].J Hydrol Div,ASCE,1974,100(5):631-644.
  • 5PETRIRAT K.Seal vibration[C]//NAUDASCHER E,ROCKWELL D.Symposium on Practical Experiences with Flow-Induced Vibrations.Berlin:Springer-Verlag,1980:476-497.
  • 6ISHI N,IMAICHI K,YAMASAKI M.Flow-induced structural vibration of single-arm tainter-gates[C]//Proceedings of 20th IAHR Congress.Moscow:[s n],1983:317-324.
  • 7JONGELING T H G.Flow-induced self-excited in-flow vibrations of gate plates[J].J Fluids and Struct,1988(2):541-566.
  • 8吴杰芳 张晓平.大坝底孔弧形闸门原型振动试验研究[J].泄水工程与高速水流,1992,(3):4-8.
  • 9严振华,阎诗武,樊宝康.高水头大尺寸闸门结构的流激振动原型观测研究[M]..泄水工程与高速水流.长春:吉林科学技术出版社,2000.99-105.
  • 10ISHII N,NAUDASCHER E.Field tests on natural vibration modes of a tainter gate[C]// SMITH K V H.International Conference on Hydraulic Design in Water Resources Engineering:Channels and Channel Control Structure.Berlin:Springer-Verlag,1984:209-222.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部