期刊文献+

人工神经网络在岩体质量分级中的应用 被引量:23

Application of artificial neural network in rockmass quality classification
下载PDF
导出
摘要 结合四川省金沙江某水电站工程实例,应用BP人工神经网络方法建立3层BP网络模型,选取岩石单轴抗压强度等6个影响因素为输入变量,对坝基复杂岩体进行质量分级。通过机算机Visual C++语言编程实现神经网络模型,进行网络的学习和运算。以神经网络合理结构分析方法选取合理结构,确定合理隐层单元的数量,提高网络测试的精度。对测试结果的分析发现,经过优化的BP网络模型经多次学习后,测试精度提高,结果可靠,取得较好的实际应用效果。 Applying the method of the back propagation artificial neural network of a hydraulic power station on the Jinsha River, Sichuan Province, choosing six influential factors on the rock mass quality as the input variables, such as one axis compressive strength of rock, the complicated rock mass of dam foundation is classified. With Visual C++ program language, network model is realized and can be used to learning and calculating. Through selecting rational network structure and setting the rational number of implicit layers and their units, network and training procedure are optimized, testing precision is also improved. The analysis indicats that the test result is exact and credible. The application has gained a good effect.
出处 《世界地质》 CAS CSCD 2004年第1期64-68,共5页 World Geology
基金 教育部资助优秀年轻教师基金项目(120413133)
关键词 人工神经网络 岩体质量 网络模型 网络结构 artificial neural network rockmass quality network model network structure
  • 相关文献

参考文献2

二级参考文献12

  • 1楼顺天 施阳.基于MATLAB的系统分析与设计--神经网络[M].西安:西安电子科技大学出版社,1999..
  • 2-.隧道围岩稳定系统分析[M].北京:中国铁道出版社,1991.28-44.
  • 3Auziner W, Stetter H J. An elimination algorithm for the computation of all zeros of a system of multivariate polynomial equations[J]. Series of Number Math, 1988,(86):11-30.
  • 4Rumelhart D E, Hinton G E,Williams R J. Learning Internal representations by error propagation in parallel distributed processing[M]. Gambridgef:MIT Press, 1986.318-362.
  • 5Huang S H, Zhang H C. Artificial neural network in manufacturing:concepts,applications,and perspectives[J]. IEEE Transaction on Components,Packaging and Manufacturing Technology, 1994,17(2):212-228.
  • 6Rumelhart D E, Hinton G E. Learning internal representations by back-propagation error[J]. Nature,1986, 323(9):533-536.
  • 7Magnitskii N A. Some new approaches to the construction and learning of artificial neural networks[J]. Computational Mathematics and Modeling, 2001,12(4):293-304.
  • 8Guh R S, Tannock J D T. A neural network approach to characterize pattern parameters in process control charts[J]. Journal of Intelligent Manufacturing, 1999,10(5):449-46.
  • 9Alexander G P,Bentito F A. An accelerated learning algorithm for multi-layer perceptron network[J]. IEEE Trans on Neural Networks, 1994,5(3):493-497.
  • 10侯祥林,陈长征,虞和济,王铁光,纪盛青.神经网络权值和阈值的优化方法[J].东北大学学报(自然科学版),1999,20(4):447-450. 被引量:49

共引文献49

同被引文献196

引证文献23

二级引证文献200

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部