期刊文献+

复合压电材料尖劈端部奇性问题有限元分析

FE Method for Singularities Near a Wedge of Composite Piezoelectric Materials
下载PDF
导出
摘要 从应力平衡方程、电场Maxwell方程和尖劈边界条件构成的控制方程出发,导出一个基于位移场、电势的弱式方程.采用一维有限元分析技术,沿着尖劈端部领域进行单元离散,建立求解压电复合材料尖劈附近奇性场问题的有限元特征分析方法.对于压电材料非常重要的电学边界问题,本文也有所涉及,并给出了平面导电裂纹和绝缘裂纹的算例. Based on stress equilibrium, electric field equation and boundary conditions, a one dimensional finite element procedure is proposed to determine singularities in around a wadge piezoelectric materials with dividing elements along their perimeters. This paper discusses the singular stress and electric displacement angular functions around a crack tip under conducting and impermeable conditions on the crack surfaces. The approach is validated by comparing its predictions with other available theoretical solutions.
出处 《华东交通大学学报》 2004年第1期1-7,共7页 Journal of East China Jiaotong University
基金 国家自然科学基金资助项目(10362002) 江西省自然科学基金资助项目(0350062)
关键词 复合压电材料 尖劈端部 奇性应力指数 有限元 应力平衡方程 MAXWELL方程 piezoelectricity, wedge, singularity, finite element method
  • 引文网络
  • 相关文献

参考文献13

  • 1Chung MY & Ting TCT. Line force, charge and dislocation in anisotropic piezoelectric composite wedges and spaces. ASME Journal of Applied Mechanics, 1995, 62: 423-428.
  • 2Xu XL & Rajapakse RKND. On singularities in composite piezoelectric wedges and junctions. International Journal of Solids and Structures, 2000, 37: 3253-3275.
  • 3Chue CH & Chen CD. Decoupled formulation of piezoelectric elasticity under generalized plane deformation and its application wedge problems. International Journal of Solids and Structures, 2002, 39: 3131-3158.
  • 4Liu YH, Xu JQ & Ding HJ. An axisymmetric interface edge of bounded transversely isotropic piezoelectric materials under torsion. Journal of Applied Mechanics, 1999, 66: 821-823.
  • 5王效贵,许金泉.特征值为二重根的压电材料异材界面端奇异性[J].力学季刊,2001,22(1):55-61. 被引量:2
  • 6平学成,陈梦成.楔形体尖端近似场的非协调有限元特征法[J].华东交通大学学报,2001,18(4):6-11. 被引量:7
  • 7Chen MC(陈梦成) & Sze KY. A novel hybrid finite element analysis of bimaterial wedge problems. Engineering Fracture Mechanics, 2001, 68:1463-1476.
  • 8Sosa H. On the fracture mechanics of piezoelectric solids, International Journal of Solids and Structures, Vol.29,No.21,pp.2613-2622,1992.
  • 9Parton VZ. Fracture mechanics of piezoelectric materials. Acta Astro, 1976, 3: 671-683.
  • 10Deeg WF. The analysis of dislocation, crack and inclusion problems in piezoelectric solids. Ph. D thesis, Stanford University, 1980.

二级参考文献10

  • 1Muskhelishvili NI.奇异积分方程[M].上海:上海科学技术出版社,1966..
  • 2王子昆,Acta Mech Sin,1994年,10卷,1期
  • 3范天佑,断裂力学基础,1973年
  • 4Chen W T,J Appl Mech,1966年,32卷,2期,347页
  • 5Liu Y H,Journal of Applied Mechanics,1999年,66卷,821页
  • 6Ding H J,International Journal of Solids Structures,1996年,33卷,16期,2283页
  • 7Wang Z K,International Journal of Solids and Structures,1995年,32卷,1期,105页
  • 8Suo Z,J Mech Phys Solids,1992年,40卷,4期,739页
  • 9Zhang T Y,Journal of Applied Physics,1992年,71卷,5865页
  • 10王自强,韩学礼.压电材料中心裂纹问题[J].固体力学学报,1999,20(2):95-95. 被引量:8

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部