期刊文献+

水介质对多种边界条件方板振动频率及辐射效率的影响 被引量:5

EFFECT OF WATER ON TEH VIBRATION FREQUENCIES AND MODAL RADIATION EFFICIENCIES OF SQUARE PLATE WITH DIFFERENT BOUNDARY CONDITIONS
下载PDF
导出
摘要 本文提出了一种简便计算置于无限大障板上的方板水中振动频率以及辐射效率的计算方法。在假定流体不可压、方板作小振幅振动、水中模态挠度近似为真空模态挠度的条件下 ,利用瑞利积分得到了因流体压而引起的附加质量密度。进而应用瑞利方法得到了方板水中振动频率与真空中振动频率、无量纲附加虚质量增量之间的关系。在真空中模态的有限元方法分析数据以及采用适当方法处理奇点积分的基础上 ,应用离散积分计算了无量纲附加虚质量增量的值。从真空中模态特征频率出发用迭代法直到水中频率收敛为止而得到水中方板的特征频率 ,进而计算了方板的模态辐射效率。方法的有效性通过方板的无量纲附加虚质量增量与文献 [11]结果对比的一致性来验证。 A method of computating the vibration frequencies and modal radiation efficiencies of clamped baffled square plate in water is described. The added mass density due to water pressure is expressed using Rayleigh's integral under the conditions that the water is incompressible, the plate vibrates in small amplitude and the modal deflection in water equal approximately that in vacuo. Then the relationship between the vibration frequency of the plate in water and that in vacuo and the effect of nondimensionalized added virtual mass incremental (NAVMI) are obtained by utilizing Rayleigh method. Based upon the data of modal analysis for the plate in vacuo by finite element method (FEM) and properly dealing with the integral at singularity, the value of NAVMI is obtained by discretizing the integral. Moreover the vibration frequencies of the plate are computed using iterative method, which begins with the in vacuo eigenfrequency and continues until in water eigenfrequency converges. Then the modal radiation efficiencies of the plate are acquired. The present approach is validated by comparison the NAVMI computed here with the results of reference.
出处 《振动与冲击》 EI CSCD 北大核心 2004年第1期94-97,共4页 Journal of Vibration and Shock
关键词 水介质 边界条件 方板 振动频率 辐射效率 有限元法 瑞利积分 超越函数 Boundary conditions Deflection (structures) Finite element method Iterative methods Modal analysis Vibrations (mechanical)
  • 相关文献

参考文献3

二级参考文献11

  • 1赵键,汪鸿振,朱物华.边界元法计算已知振速封闭面的声辐射[J].声学学报,1989,14(4):250-257. 被引量:30
  • 2诺顿MP 盛元生等(译).工程噪声和振动分析基础[M].北京:航空工业出版社,1993.155-187.
  • 3徐卫华,中山大学学报,1993年,32卷,2期,18页
  • 4李敬芳,硕士学位论文,1987年
  • 5何祚镛,声学学报,1985年,10卷,6期,344页
  • 6许永林,浙江大学学报,1985年,19卷,12期,43页
  • 7曹国雄,弹性矩形薄板振动,1983年
  • 8何祚镛,水声波动问题,1983年
  • 9孙明光,中山大学学报,1980年,3卷,26页
  • 10诺顿 M P,工程噪声和振动分析基础,1993年,113页

共引文献105

同被引文献57

  • 1龚爱云,张少雄.矩形板的水弹性振动[J].船海工程,2001,30(S2):71-74. 被引量:2
  • 2王少波,刘元杰,梁醒培,赵明皞,王正伟.弹性板在粘性流体中的耦合振动分析[J].机械工程学报,2004,40(7):63-66. 被引量:17
  • 3邹元杰,赵德有.结构在浅水中的振动和声辐射特性研究[J].振动工程学报,2004,17(3):269-274. 被引量:17
  • 4石焕文,孙进才,盛美萍,尚志远.裂纹及水介质对薄圆板振动辐射声场特性的影响[J].声学学报,2006,31(2):158-166. 被引量:4
  • 5Kwak M K. Hydroelastic vibration of circular plates [J]. Journal of Sound and Vibration, 1997,201 : 293-303.
  • 6Amabili M. Effect of finite fluid depth on the hydroelastic vibrations of circular and annular plates [J]. Journal of Sound and Vibration, 1996,193(4) : 909- 925.
  • 7Amabili M, Frosali G, Kawk M K. Free vibrations of annular plates coupled with fluids [J]. Journal of Sound and Vibration, 1996,191(5) : 825-846.
  • 8Zhu F. Rayleigh-Ritz method in coupled fluid-structure interacting systems and its applications[J]. Journal of Sound and Vibration, 1995,186 : 543-550.
  • 9Kwak M K. Hydroelastic vibration of rectangular plates[J]. Transactions of the ASME, Journal of Applied Mechanics, 1996,63 : 110-115.
  • 10Huang C S, Leissa A W. Vibration analysis of rectangular plates with side cracks via the Ritz method[J]. Journal of Sound and Vibration, 2009, 323 (3-5): 974-988.

引证文献5

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部