期刊文献+

连续时间系统的混沌同步 被引量:2

Chaotic Synchronization of Time-continuous System
下载PDF
导出
摘要 本文讨论混沌连续时间系统的完全同步问题,提出一个构造混沌同步系统的新方法。这个方法基于线性系统的稳定性分析准则。通过对系统线性项与非线性项的适当分离,当系统的雅可比矩阵的所有特征值都具有负实部时,同步误差e(t)的线性系统是渐进稳定的,即可实现新系统和原系统的完全同步。新方法不需计算条件Lyapunov指数以作为判定同步的条件,因而比通用方法更为简单有效。新方法适用于自治或非自治系统,尤其适用于具有多于两个正Lyapunov指数的超混沌系统。甚至当初始同步误差极大时,也能实现理想的混沌同步。以Lorenz系统,耦合Duffing振子系统和超混沌R(?)ssler系统作为算例。数值计算结果证实所提出方法的有效性和鲁棒性。 The problem on the complete synchronization of a chaotic time-continuous systems was discussed, and a new approach for constructing chaotically synchronizing systems was proposed. This method was based upon the stability criterion of linear systems. Chaotic synchronization of time-continuous systems was achieved by means of appropriate separation of the chaotic system, when all eigenvalues of Jacobian matrix of the system have negative real parts which leads to that linear system of the synchronization error e(t) is asymptotically stable. Since the Lyapunov exponents are not required to calculate in construction of the new system, the proposed method is convenient for the synchronization of autonomous or non-autonomous systems, particularly for the synchronization of superchaotic systems with more than two positive Lyapunov exponents. The Lorenz system, the coupled Duffing oscillator and the R(?)ssler system were treated as numerical examples. The effectiveness and robustness of the new method is verified by the numerical results.
出处 《力学季刊》 CSCD 北大核心 2004年第1期9-14,共6页 Chinese Quarterly of Mechanics
基金 国家自然科学基金(10272074)
关键词 连续时间系统 混沌同步 稳定性准则 超混沌系统 LORENZ系统 耦合Duffing振子系统 chaotic synchronization stability criterion hyperchaotic system
  • 相关文献

参考文献12

  • 1Cuomo K M, Oppenheim A V. Circuit implementation of synchronized chaos with applications to communications[C]. Phys Rev Lett.1993, 71:65-68.
  • 2Kocarev L, Parlitz U. General approach for chaotic synchronization with applications to communication[C]. Rhys Rev Lett. 1995, 74..5028-5031.
  • 3Chen L Q,Liu Y Z. An open-plus-closed-loop approach to synchronization of chaotic and hyperchaotic maps[J]. International Journal of Bifurcation and Chaos, 2002,12(5):1219-1225.
  • 4Pecora L M, Carrol T L. Synchronization in chaotic system[C]. Phys Rev Lett, 1990. 64:821-824.
  • 5Pecora L M. Carrol T L. Driving systems with chaotic signals[C]. Phys Rev A, 1991, 44:2374-2383.
  • 6Peng J H, Ding E J, Ding M, Yang W. Synchronizing hyperchaos with a scalar transmitted signal[C]. Phys Rev Lett. 1996. 76: 904-907.
  • 7Duan C K. Yang S S. Synchronizing hyperchaos with a scalar signal by parameter controlling[C]. Phys Lett A. 1997. 229: 151-155.
  • 8Gauthier D J, Bienfang J C. Intermittent loss of synchronization in coupled chaotic oscillatiors., toward a new criterion for high-quality synchronization[C]. Phys Rev Lett, 1996, 77:1751-1754.
  • 9Brown R , Rulkov N F. Designing a coupling that guarantees synchronization between identical chaotic systems[C]. Phys Rev Lett,1997. 78: 4189-4192.
  • 10Johnso G A. Mar D J. Carroll T L , Pecora L M. Synchronization and imposed bifurcations in the presence of large parameter mismatch[C]. Phys Rev Lett, 1998, 80:3956-3959.

同被引文献12

  • 1马军海,任彪,陈予恕.一类非线性混沌系统混沌吸引子的冲击控制[J].应用数学和力学,2004,25(9):889-894. 被引量:2
  • 2Pecora L M,Carroll T L.Synchronization in chaotic systems[J].Phys Rev Lett,1990,64:821-824.
  • 3Rosenblum M G,Pikovsky A S,Kurths J.Phase synchronization of chaotic oscillators[J].Phys Rev Lett,1996,76:1804-1807.
  • 4Rosa E,Ott E,Hess M H.Transition to phase synchronization of chaos[J].Phys Rev Lett,1998,80:1642-1647.
  • 5Rosenblum M G,Pikovsky A S,Kurths J.From phase to lag synchronization in coupled chaotic oscillators[J].Phys Rev Lett,1997,78:4193-4196.
  • 6Rulkov N F,Sushchik M M,Tsimring L S,et al.Generalized synchronization of chaos in directionally coupled chaotic systems[J].Phys Rev E,1995,51:980-994.
  • 7Kocarev L,Parlitz U.Generalized synchronization,predictability,and equivalence of unidirectionally coupled dynamical systems[J].Phys Rev Lett,1996,76:1816-1819.
  • 8Boccaletti S,Valladares D L.Characterization of intermittent lag synchronization[J].Phys Rev E,2000,62:7497-7500.
  • 9Zaks M A,Park E H,Rosenblum M G,et al.Alternating locking ratios in imperfect phase synchronization[J].Phys Rev Lett,1999,82:4228-4231.
  • 10Femat R,Solis-Perales G.On the chaos synchronization phenomena[J].Phys Lett A,1999,262:50-60.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部