期刊文献+

变直径次梯度投影函数优化方法 被引量:2

Subgradient projection method with variable diameter for optimization
下载PDF
导出
摘要 拉格朗日松弛法的关键是求解对偶函数,而在对偶函数不可微的情况下人们经常采用次梯度法,为此提出一种变直径次梯度投影法.该方法根据投影性质确定对偶问题定义域的有效直径,从而使其收敛性不依赖于最优目标值和对偶问题定义域直径等任何先验知识,并证明了其收敛性,给出了收敛效率.通过一个指派问题说明了所提出方法的有效性. A key step of Lagrangian relaxation is to optimize the dual function, and the subgradient method is frequently used when the dual function is nondifferentiable. A subgradient projection method with variable diameter is presented for the dual function of constrained programming. The efficient diameter of the dual function is determined according to the projection properties, consequently the convergence of the method is independent of any prior knowledge such as the optimal value, the diameter of the dual function definition domain, etc. The convergence is proved, and the efficiency of it is given. A numerical test on an assignment problem shows the efficiency of the method.
出处 《控制与决策》 EI CSCD 北大核心 2004年第3期303-306,共4页 Control and Decision
基金 国家自然科学基金资助项目(60174046).
关键词 对偶 次梯度投影 变直径 Algorithms Error analysis Gradient methods
  • 相关文献

参考文献6

  • 1[1]Polyak B T. Minimization of unsmooth functionals[J].USSR Computational Mathematics and MathematicalPhysics, 1969,9 (3) : 14-29.
  • 2[2]Allen E, Helgason R, Kennington J, et al. A generalization of polyak′s convergence result for subgradient optimization [J]. Mathematical Programming, 1987,37(3) : 309-317 .
  • 3[3]Kim S, Ahn H, Cho S. Variable target value subgradient metheod[J], Mathematical Programming, 19991,49: 359-369.
  • 4[4]Kiwiel K C. The efficiency of subgradient projection methods for convex optimization, Part I: General level methods [J]. SIAM J Control and Optimization, 1996,34(2): 660-676.
  • 5[5]Kiwiel K C. The efficiency of subgradient projection methods for convex optimization, Part II: Implementation and optimization [J]. SIAM J Control and Optimization, 1996,34 (2): 677-697.
  • 6[6]Bertsekas D P. Nonlinear Programming [M]. Second Edition. Belmost: Athena Scientific, 1999.

同被引文献14

  • 1赵天智,金以慧.基于依赖关系的供应链优化协调[J].计算机集成制造系统,2004,10(8):929-933. 被引量:14
  • 2周威,金以慧.利用模糊次梯度算法求解拉格朗日松弛对偶问题[J].控制与决策,2004,19(11):1213-1217. 被引量:15
  • 3Ph.D.Candidate:Sun JianXi’an University of Technolgy, Xi’an 710048, ChinaSupervisor:Yu Changzhao (Tsinghua University, Beijing 100084, China)Li Yuzhu (Tsinghua University, Beijing 100084, China)Chen Changzhi (Tsinghua University, Beijing 100084, China)Members of Dissertation Defense Committee:Gao Jizhang (China Institute of Water Resources and Hydropower Research), ChairmanLi Guifen (China Institute of Water Resources and Hydropower Research)Cui Guangtao (Tianjing University)Wang Xingkui (Tsinghua University)Yu Changzhao (Tsinghua University)Li Yuzhu (Tsinghua University)Chen Changzhi (Tsinghua University).FLOOD DISCHARGE AND ENERGY DISSIPATION BY JETS FROM OUTLETS IN HIGH ARCH DAM[J].Journal of Hydrodynamics,2003,15(1):122-122. 被引量:39
  • 4马士华,沈玲.基于时间竞争的供应链预订单计划模式[J].计算机集成制造系统,2005,11(7):1001-1006. 被引量:12
  • 5周威,金以慧.利用拉格朗日松弛算法协调多厂供应链生产计划[J].计算机集成制造系统,2005,11(9):1255-1259. 被引量:6
  • 6玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004..
  • 7DE KOK T G,FRANSOO J C.Planning supply chain operations:definition and comparison of planning concepts[A].Supply Chain Management:Design,Coordination and Operation[C].Amsterdam,Netherlands:Elsevier,2003.597-675.
  • 8STADTLER H.Supply chain management and advanced planning-basics,overview and challenges[J].European Journal of Operational Research,2005,163(3):575-588.
  • 9BHATNAGAR R,CHANDRA P,GOYAL S K.Models for multi-plant coordination[J].European Journal of Operational Research,1993,67(2):141-160.
  • 10DUDEK G,STADTLER H.Negotiation-based collaborative planning between supply chains partners[J].European Journal of Operational Research,2005,163(3):668-687.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部