期刊文献+

有关LUCAS序列的几个充要条件 被引量:2

SOME NECESSARY AND SUFFICIENT CONDITIONS ON LUCAS SEQUENCES
下载PDF
导出
摘要 Lucas序列Un(u)和Vn(u)定义为:U0=0,V0=2,U1=1,V1=u,Un=uUn-1-Un-2,Vn=uVn-1-Vn-2,n≥2.本文分别给出了同余式组      UN+r(u)≡0modNVN+r(u) 2modN,UN+r(u) 0modNVN+r(u)≡2modN和UN+r(u) 0modNVN+r(u) 2modN成立的几个充要条件,并对满足同余式组的u的个数进行估计,其中N=pq是两个奇素数之积,q=k(p+1)+r,|r|<p+12,k≥7,(u2-4p)=-1且gcd(u,N)=gcd(u2-4,N)=1. The lucas sequences U_n(u) and V_n(u) were defined as: U_0=0, V_0=2, U_1=1, V_1=u, U_n=uU_(n-1)-U_(n-2),V_n=uV_(n-1)-V_(n-2), n≥2. In this paper, we present some necessary and sufficient conditions on the systems of congruences: U_(N+r)(u)≡0 mod NV_(N+r)(u)2 mod NB),U_(N+r)(u)0 mod NV_(N+r)(u)≡2 mod N and U_(N+r)(u)0 mod NV_(N+r)(u)2 mod Nand estimate the number of u's satisfying the above systems respectively, where N=pq is a product of two odd primes, q=k(p+1)+r,|r|<p+12,k≥7,(u^2-4p)=-1, and gcd(u,N)=gcd(u^2-4,N)=1.
出处 《安徽师范大学学报(自然科学版)》 CAS 2004年第1期1-4,共4页 Journal of Anhui Normal University(Natural Science)
基金 国家自然科学基金(10071001) 安徽省自然科学基金(01046103) 安徽省教育厅自然科学基金(2002KJ131)资助项目.
关键词 LUCAS序列 整数分解 素性测定 计算数论 同余 factorization of integers primality testing lucas sequences computational number theory
  • 相关文献

参考文献5

  • 1Zhang Zhenxiang(张振祥). Using Lucas sequences to factor large integers near group ordera [J]. The Fibonacci Quarterly, 2001,39(3) :228 -237.
  • 2Zhang Zhenxiang(张振祥). A one- parameter quadratic-base version of the Baillie - PSW probable prine test, Mathematics of Computation[J]. 2002,71:1699- 1734.
  • 3Cohen H. A coursein computational algebraic number theory [M]. 3rd ed. Berlin: Springer-verlag, 1996.
  • 4Bressoud D M, Wagon S. A course in computationat number theory[M]. New York: Key college publishing, springer - verlag, 2000.
  • 5Ireland K, Rosen M. A classical introduction to modem number theory[M]. New York: Springer- verlag, 1982.

同被引文献15

  • 1周方敏,季益贵.单参数二次基伪素数的一些性质[J].安徽师范大学学报(自然科学版),2004,27(4):373-376. 被引量:4
  • 2ZHANG Zhen-xiang(张振祥). A one-parameter quadratic-base version of the Baillie-PSW probable prime test[J]. Math Comp, 2002,71:1699- 1734.
  • 3Cohen H, Lenstra H W. Primality testing and Jacobi sums [J]. MathComp, 1984,42:297-330.
  • 4Goldwaser S, Kilian J. Primality testing using Elliptic curves [J]. Joumal of ACM, 1999,46(4):450-472.
  • 5Lenstra H W. Factoring integers with elliptic curves [J]. Annals of Math, 1987, 126:649 - 673.
  • 6Cohen H. A course in computational algebraic number theory [ M]. 3rd ed. Graduate Textbook in Mathematics 138, Springer-Verlag 1996.
  • 7Agrawal M, Kayal N, Saxenag N. Primes is in P [J]. Annal of Mathematies, to apear; preprint, August 2002, http://www. cse. iitk. ac. in.
  • 8Ziegler M, Gunter. The great prime number record races [J]. Notices of AMS, 2004, 51(4):414 -416.
  • 9ZHANGZhen-xiang(张振祥).Finding strong pseudoprimes to several bases [J].Math Comp,2001,70:863-872.
  • 10ZHANGZhen-xiang(张振祥) TangMin(汤敏).Finding strong pseudoprimes to several bases II[J].Math Comp,2003,72:2085-2097.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部