期刊文献+

TFR与逆幂律模型下Weibull分布序加试验的Bayes分析 被引量:1

Bayesian Analysis of Weibull Progressive Stress Accelerated Life Tests under TFR and Inverse Power Law Models
下载PDF
导出
摘要 讨论了TFR模型下Weibull分布序进应力加速寿命试验的寿命分布,并就逆幂律模型给出了分布参数及加速方程系数的Bayes估计,并通过一个实际例子进行了说明. This paper discusses the life distributions of progressive stress accelerated life tests for Weibull distributions under TFR model and gives the Bayesian estimates of the distribution parameters and the coefficients in the inversepowerlaw accelerated equation. An practical example is given to illustrate the proposed method.
出处 《上海师范大学学报(自然科学版)》 2004年第1期26-31,共6页 Journal of Shanghai Normal University(Natural Sciences)
基金 国家自然科学基金资助项目(10271079).
关键词 WEIBULL分布 序进应力加速寿命试验 BAYES估计 TFR模型 逆幂律 Weibull distribution Progressive stress accelerated life test Bayes estimate TFR model Inverse power law
  • 相关文献

参考文献10

  • 1汤银才,费鹤良.基于Gibbs抽样的Weibull分布序进应力加速寿命试验的Bayes分析[J].数理统计与应用概率,1998,13(1):83-90. 被引量:11
  • 2汤银才.TFR模型下Weibull分布步加试验的寿命分布及统计分析[A]..第六届国际可靠性维修性安全性会议(ICRMS)[C].西安,2004..
  • 3中国电子技术标准化研究所.可靠性试验用表[Z].北京:国防工业出版社,1987..
  • 4BERGER J O. Sun, Dongchu, Bayesian Analysis for the Poly-Weibull Distribution[J]. Journal of the American Statistical Association, 1993, 88(424) : 1412-1418.
  • 5BHATTACHARYYA G K, SOEJOETI Z A. A Tampered Failure Rate Model for Step-Stress Accelerated Life Test[J]. Communications in Statistics-Theory Method, 1989, 18(5) : 1627-1643.
  • 6MADI M T. Multiple Step-Stress Accelerated Life Test: the Tampered Failure Rate Model[J]. Communications in Statistics-Theory and Method, 1993,22 (9) .. 2631-2639.
  • 7GELFAND A E, SMITH A F M, LEE T M. Bayesian Analysis of Constrained Parameter and Trucated Data Problems Using Gibbs Sampling[J]. Journal of the American Statistical Association, 1992, 87(418):523-532.
  • 8GILKS, WILD P. Adaptive Rejection Sampling for Gibbs Sampling[J]. Appl Statist, 1992: 337-348.
  • 9NELSON W. Accelerated Life Testing Step-stress Models and Data Analysis[J]. IEEE Transactions on Reliability, R-29, 1980 : 103-108.
  • 10XU Haiyan, TANG Yincai. Commentary: The Khamis-Higgins Model[J]. IEEE Transactions on Reliability, 2003,52 (1);2003:1-6.

共引文献10

同被引文献13

  • 1严晓东,马翔,郑荣跃,吴亮.三参数威布尔分布参数估计方法比较[J].宁波大学学报(理工版),2005,18(3):301-305. 被引量:58
  • 2汤银才.CE模型下Weibull分布序加试验的Bayes分析[J].系统科学与数学,2006,26(3):342-351. 被引量:12
  • 3徐晓岭.三参数Weibull分布参数的点估计[J].信息工程学院学报,1994,13(3):45-52.
  • 4Smith R L. A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution. Applied Statistics, 1987 36(3): 358-369.
  • 5Tsionas E G. Posterior analysis, prediction and reliability in three-parameter Weibull distributions. Communications in Statistics- Theory and Methods, 2000, 29(7): 1435-1449.
  • 6Berger J O and Sun Dongchu. Bayesian analysis for the poly-Weibull distribution. Journal of the American Statistical Association, 1993, 88: 1412-1418.
  • 7Tierney L and Kadane J B. Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association, 1986, 81: 82-86.
  • 8German S and German A. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattn Anal. Mach. Intell., 1984, 6: 721-741.
  • 9Gilks W R and Wild P. Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 1992, 41: 337-348.
  • 10费鹤良,陈迪.三参数威布尔分布的参数估计方法[J].上海师范大学学报(自然科学版),1996,25(2):1-8. 被引量:12

引证文献1

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部