期刊文献+

集值函数的对偶半模模糊积分 被引量:1

Semi-conormed fuzzy integrals of set-valued functions
原文传递
导出
摘要 为了将函数的对偶半模模糊积分推广到集值函数的情形,要建立一种新的非可加集值积分理论。仿照Aumann积分的方式,用集值函数的单值可测选择的对偶半模模糊积分,定义集值函数的对偶半模模糊积分,并给出了其性质及收敛定理。这些是函数的对偶半模模糊积分有关结果的推广,同时是一种新的集值积分。 The semi-conormed fuzzy integral of functions was extended to the case of set-valued functions to develop a new theory on non-additive set-valued integrals. The present paper uses a method similar to Aumann's integral to define the semi-conormed fuzzy integral of set-valued functions using the semi-conormed fuzzy integral of single-valued measurable selections of set-valued functions and to describe its properties and convergence theorems. These results extend the semi-conormed fuzzy integral of single-valued functions to a new kind of set-valued integrals.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第3期369-371,共3页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金 (10271035)
关键词 集值函数 对偶半模模糊积分 非可加集值积分理论 连通集 set-valued function semi-conormed semi-conormed fuzzy integral
  • 相关文献

参考文献9

  • 1郭彩梅,张德利.Fuzzy-Val模糊值Choquet积分(Ⅱ)——函数关于模糊值模糊测度的Choquet积分(英文)[J].模糊系统与数学,2003,17(3):23-28. 被引量:1
  • 2Aumann J. Integrals of set-valued functions [J]. J Math Anal Appl, 1965, 12:1-12.
  • 3Debreu G. Integration of correspondence [A]. Proc 5th Berkeley Symp on Math Star and Prob [C]. 1966, Ⅱ: 351 -372.
  • 4Klein E, Thompson A. Theory of Correspondences [M].New York: Wiely-Interscience, 1984.
  • 5Sugeno M. Theory of Fuzzy Integrals and Its Applications[D]. Tokyo: Tokyo Institute of Technology, 1974.
  • 6Wang Z, Klir G J. Fuzzy Measure Theory [M]. New York:Plenum Press, 1992.
  • 7Garcia F S, Alvarez P G. Measures of fuzziness of fuzzy events [J]. Fuzzy Sets and Systems, 1987, 21:147 - 157.
  • 8Cooman G, Kerre E. Possibility and necessity integrals [J].Fuzzy Sets and Systems, 1996, 77: 207 - 227.
  • 9Zhang D, Wang Z. On set-valued fuzzy integrals [J]. Fuzzy Sets and Systems, 1993, 56:237 - 241.

二级参考文献3

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部