摘要
为了求解非线性方程,利用同伦方法推出具有大范围稳定性的连续型方法、进而离散化得到Newton类方法和Steffenson-Newton类方法,分析得出Newton类方法的大范围收敛性,用Taylor展开证明Newton类方法和Steffenson-Newton类方法在弱条件下的二阶收敛性,并得到收敛速度因子。Newton类方法摒弃了f'(x)≠0这一苛刻条件,带有可调整收敛速度的参数,而Steffenson-Newton类方法还不需要调用导数值,它们都优于Newton法和Newton下山法。
A continuous method was developed for solving nonlinear equations with large-scale stability using the homotopy method. Newton-like iterative methods and Steffensen-Newton-like iterative methods were developed by discretization of the method. The large-scale convergence for Newton-like iterative methods has quadratic convergence. The convergence factors for weak convergence for Newton-like iterative methods and Steffensen-Newton-like iterative methods were found using Taylors series expansions. Newton-like iterative methods remove the strict condition f' (x) ≠ 0 imposed on f(x) and have parameters to adjust the convergence rate. The Steffensen-Newton-like iterative methods do not use derivatives, so they have advantages over Newton's method and the Newton-down hill method.
出处
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2004年第3期372-375,共4页
Journal of Tsinghua University(Science and Technology)
基金
北京市教育委员会科技发展计划项目 (KM200310009032)
国家"九七三"重点基础研究基金 (2002CB312104)