期刊文献+

ANSYS的二次开发与多维稳态导热反问题的数值解 被引量:3

Secondary Development of ANSYS and Numerical Solution of Multi-dimension Steady Heat Conduction Inverse Problem
下载PDF
导出
摘要 由于反问题本身所具有的不适定性和复杂性,多维导热反问题的数值方法往往偏于复杂。建立了稳态导热控制方程、边界条件以及附加条件(测量温度)来表述的三维稳态导热反问题的数学模型。在此基础上,利用参数化设计语言APDL对大型通用有限元分析软件ANSYS进行简单的二次开发,从而可快速简易地求解各种复杂几何形状物体导热的反问题,而且只需知道部分点的温度值,无需对热流量进行测量,从而减小因测量误差而带来解的偏差。对一个已知导热系数的物体进行稳态导热反问题求解,误差很小,绝对误差0.055W/m2·℃,相对误差为1.72%,验证了本方法的可行性。而且,为进一步提高解的精确性,可多测量几组,求解出相对应的导热系数,然后把其平均值作为待求的导热系数。此方法同样适用于已知初始条件的多维瞬态导热问题。 Due to the uncertainty and complexity of inverse problem, numerical method of the multi-dimension heat conduction inverse problem is always complex. The mathematics model of three-dimension steady heat conduction inverse problem, including steady heat conduction control equation, boundary conditions and additional conditions (measuring temperature), is established. In virtue of the secondary development with big FEA software ANSYS with ANSYS Parametric Design Language (APDL), heat conduction inverse problem of all kind of complicated object can be solved quickly and easily. The basic step is selecting various measuring spots on the experienced object, measuring the temperatures of the spots, determining the approximate range of thermal conductivity coefficient according to the related data, selecting the suitable cycle increment, establishing parametric model with APDL and finally test calculating thermal conductivity coefficient. In view of the uncertainty of inverse problem and measurement error, all the absolute indexes of difference of calculated temperatures and measurement temperatures should be less than the error during the try calculation. In order to simplify the experiment, the measuring spots are selected among those belong to the surface. During the factual application, more accurate solution would be obtained by reasonably selecting the inner spots. Furthermore, only the temperatures of some spots are necessarily known, so the solution error due to measurement can be greatly decreased. From the result of the calculation of an example, the error is very small, the absolute error and relative error are 0.055W/m2·℃ and 1.72% respectively, which verifies the feasibility of this method. Furthermore, in order to enhance the precision of solution, more data may be measured to obtain corresponding thermal conductivity coefficients, and calculate the mean of the thermal conductivity coefficients as object index. This method is also applicable to multi-dimension transient heat conduction inverse problem with known initial conditions.
出处 《建筑热能通风空调》 2004年第2期92-94,共3页 Building Energy & Environment
关键词 热传导 反问题 热传导系数 ANSYS 导热系数 数值方法 ANSYS, secondary development, heat conduction, inverse problem, thermal conductivity coefficient
  • 相关文献

参考文献3

二级参考文献7

共引文献42

同被引文献18

  • 1袁艳平,程宝义,茅靳丰.浅埋工程围护结构传热影响因素的有限元分析[J].洁净与空调技术,2004(2):35-37. 被引量:3
  • 2王秀春,智会强,毛一之,杨增军,韩鹏.多宗量导热反问题求解的神经网络法[J].航空动力学报,2004,19(4):525-529. 被引量:8
  • 3忻尚杰.地下工程空气热湿环境系统模拟与分析[M].南京:解放军理工大学出版社,2001.158~181.
  • 4[1]Ozisik,Orlande.Inverse heat transfer:fundamentals and applications[M].New York:Polak E,2000.
  • 5[4]Beck J V,Blackwell B,Clair C R.Inverse heat conduction,Ⅲ-posed problems[M].New York:John Wiley and Sons,1985.
  • 6[5]Rumelhart D E,Hinton G E,Williams R J.Learning internal representations by error propagation.Parallel distributed processing:Explorations in macrostructure of cognition[M].Cambridge:Badford Books,1986.
  • 7[6]Silva J D S,Shiguemori E H,Campos H F.Neural network systems for estimating the initial condition in a heat conduction problem//[C].Honolulu:International Joint Conference on Neural Networks World Conference on Computational Intelligence,2002.
  • 8[7]Kresa J,Woodbury K A,Ratliff J D,et al.Assessment of strategies and potential for neural networks in the inverse heat conduction problem[J].Inverse Problems in Engineering,1999,7(3):197-213.
  • 9[10]Vapnik V N.The Nature of statistical learning theory[M].New York:Springer Verlag,1995.
  • 10Yuan Yanping, Cheng Baoyi, Mao Jinfeng, et al.. Effect of the thermal conductivity of building materials on the steady-state thermal behaviour of underground building envelopes [J].International Journal of Building and Environment, 2006, 41 (3):330-335

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部