期刊文献+

时间随机环境下随机游动的渐近行为 被引量:2

Asymptotic Behavior for Random Walk in Random Environments
下载PDF
导出
摘要 本文给出了可数状态空间中时间随机环境下随机游动的一个统一的模型 .对于最常见的情况 ,即d维最近邻域随机环境下随机游动 ,如果环境是严平稳的 ,则在一定条件下 ,该随机游动满足强大数定律和中心极限定理 .特别地 ,当环境独立同分布时 ,我们可以得到更为具体的结果 ,该结果类似于经典的随机游动的相应结论 . A general model of random walk in time-random environments in any denumerable space is given in this paper.Moreover,in the case of d-dimensional nearest-neighbor random walk,if the environments are stationary,we derive a strong law of large numbers and a center limit theorem of this random walk under some reasonable conditions.Especially,when the environments are independent identically distributed,more exact results are given,which are similar to the corresponding results in the case of classical random walk.
作者 张晓敏 李波
出处 《应用数学》 CSCD 北大核心 2004年第2期295-300,共6页 Mathematica Applicata
基金 国家自然科学基金资助项目 (10 3710 92 ) 武汉大学基金资助
关键词 随机游动 渐近行为 强大数定律 中心极限定理 时间随机环境 Random environments Random walk in time-random environments d-dimensional nearest-neighbor RWRE Strong law of large numbers Center limit theorem
  • 相关文献

参考文献8

  • 1Zeitouni O. Random walks in random environments[J]. Proceedings of ICM 2002( Ⅲ ), 117 - 127.
  • 2Solomon F. Random walks in a random environment[J ]. Ann Probab , 1975,3: 1 - 31.
  • 3Cogburn R. The ergodic theory of Markov chains in random environments[J]. Z W , 1984,66: 109-128.
  • 4Orey S. Markov chains with stochastically stationary probabilities[J]. Ann Probab , 1991,19:907-926.
  • 5Zeitouni O. Lecture notes on RWRE, 2001, available at http://www. wee. technion. ac. il/aeitouni/ps/notes1. ps.
  • 6Sznitman A S, Zerner M. A law of large numbers for random walks in random environment[J]. Ann Probab ,1999,27: 1851-1859.
  • 7Kalikow S A. Generalized random walks in random environments[J]. Ann Probab , 1981,9:753-768.
  • 8Spitzer F. Principles of random walk[M]. New York: Springer, 1964.

同被引文献8

  • 1Solomon F.Random walks in random enviroment[J].Ann.Prob.,1975,3(1):1-31.
  • 2Kalikow S.A generalized random walks in random environments[J].Ann.prob.,1981,9:735-768.
  • 3Zetonui O.Lecture notes on RWRE[DB].2001,available at http:www.wee.technion.ac.il/aeitouni/ps/notesl.ps.
  • 4Cogburn R.The ergodic tehory of Markov chains in random environments[J].Z.Wahrsch.Verw.Gebiete.,1984,66(2):109-128.
  • 5Orey S.Markov chains with stochastically transtion probabilities[J].Ann.prob.1991,19(3):907-928.
  • 6Stone C J.The growth of a random walk[J].Ann.Math.Statist.,1969,40:2203-2206.
  • 7Solomen, F. Random walks in random environments[J]. Ann. Probab. 1975, 3: 1-31.
  • 8钟开莱.概率论教程[M].上海:上海科学技术出版社,1989..

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部