期刊文献+

The General Solution of Ming Antu's Problem 被引量:1

The General Solution of Ming Antu's Problem
原文传递
导出
摘要 In two centuries ago, Ming Autu discovered the famous Catalan numbers while he tried to expand the function sin(2px) as power series of sin(x) for the case p = 1, 2, 3. Very recently, P. J. Larcombe shows that for any p, sin(2px) can always be expressed as an infinite power series of sin(x) involving precise combinations of Catalan numbers as part of all but the initial p terms and gave all expansions for the case p = 4, 5. The present paper presents the desired expansion for arbitrary integer p. In two centuries ago, Ming Autu discovered the famous Catalan numbers while he tried to expand the function sin(2px) as power series of sin(x) for the case p = 1, 2, 3. Very recently, P. J. Larcombe shows that for any p, sin(2px) can always be expressed as an infinite power series of sin(x) involving precise combinations of Catalan numbers as part of all but the initial p terms and gave all expansions for the case p = 4, 5. The present paper presents the desired expansion for arbitrary integer p.
作者 XinRongMA
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2004年第1期157-162,共6页 数学学报(英文版)
关键词 Catalan number Euler identity Umbral calculator Ming Antu Sine function Catalan number Euler identity Umbral calculator Ming Antu Sine function
  • 相关文献

参考文献4

  • 1Stanley, R. P.: Enumerative Combinatorics, Cambridge University Press, Cambridge, Vol. II., 1999.
  • 2Luo, J. J.: Ming, Antu, the first inventor of Catalan aumbers in the world. Neim. Daxue. Xuebao, 19,239-245 (1988).
  • 3Larcombe, P. J.: On Catalan numbers and expanding the sine function. Bulletin of the ICA, 28, 39-47(2000).
  • 4Roman, S. M., Rota, G. C.: The umbral calculus. Advances in Mathematics, 27, 95-188 (1988).

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部