期刊文献+

关于图与其补图谱半径之和的又一上界 被引量:2

Another Upper Bounds on Sum of the Spectral Radius of a Graph and Its Complement
下载PDF
导出
摘要 给出了图与其补图谱半径之和ρ(G)+ρ(Gc)的新上界,对任一顶点数为n,边数为m的简单图G,若其色数为k,则有ρ(G)+ρ(Gc)≤2n(n-1)-2m/k+2m/k1/2,其中k,m=12n(n-1)-m分别表示Gc的色数、边数。从而改进了已有的结果。 In this paper, the new upper bounds on sum of the spectral radius of graph and its complement are given. For any simple graph G with n vertices, m edges and chromatic number k, we have (ρ(G)+)ρ(G^c)≤2n(n-1)-2m/k+2/^(1/2), where and =12n(n-1)-m denote the chromatic number and edge number of G^c respectively. And this conclusion is better than the existing results.
作者 施劲松
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第2期216-218,共3页 Journal of East China University of Science and Technology
关键词 补图 谱半径 色数 complement graph spectral radius chromatic number
  • 相关文献

参考文献17

二级参考文献5

共引文献16

同被引文献23

  • 1徐寅峰.图与其补图谱半径之间的关系[J].纯粹数学与应用数学,1993,9(2):89-90. 被引量:9
  • 2李秀兰.图与其补图的谱半径之间的关系[J].华北工学院学报,1996,17(4):297-299. 被引量:9
  • 3[4]Nosal E. Eigenvalues of graphs[M]. Canada: University of Calgary, 1970.
  • 4[6]Hong Y, Shu J L. A sharp upper bounds for the spectral radius of the Nordhaus-Gaddum type[J]. Discrete Mathematics,2000, 211: 229-232.
  • 5[8]Cvetkovic D M, Doob M, Sachs H. Spectra of graphs-theory and application[M]. New York: Academic press, 1980.
  • 6[9]Stanley R P. A bound on the spectral radius of graphs with e edges[J]. Linear Algebra and its Applications, 1987,87:267-269.
  • 7[10]Das K Ch, Kumar P. Some new bounds on the spectral radius of graphs[J].Discrete Mathematics, 2004,281: 149-161.
  • 8[11]Edwards C S, Elphick C H. Low bounds for the clique and the chromatic number of a graph[J]. Discrete Applications Mathematics,1983,5: 51-64.
  • 9[12]Hong Y. On the spectral radius and the genus of graphs[J].Journal of Combinatorial Theory, Series B, 1995, 2: 262-268.
  • 10MitrinovicDS VasicPM 赵汉宾.分析不等式[M].南宁:广西人民出版社,1986..

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部