摘要
设N是零对称的素近环,Z是其乘法中心,U是N的一个非零理想.证明了:若T是N上的一个非平凡自同构或导子,使得 u∈U,[u,T(u)]∈Z,且T(u)∈U,则当理想U是分配时,N是交换素环,且若N是2-挠自由的分配素近环,则N只须为一约当理想即可.
Let N be zero-symmetric prime near-ring and Z the center of N,U be a nonzero ideal of N.It is shown that if T is a nontrivial automorphism of N such that [u,T(u)]∈Z,and T(u) is in U for every u in U,and if U is distributive,then N is a commutive prime ring.And if N is a 2-torision free distributive prime near-ring,then U need only be a nonzero Jordan ideal.
出处
《信阳师范学院学报(自然科学版)》
CAS
2004年第2期131-133,共3页
Journal of Xinyang Normal University(Natural Science Edition)
关键词
素近环
理想
中心化映射
自同构
导子
挠自由
交换子
prime near-ring
ideal
centralizing mapping
automorphism
derivation
torision free
commutator