期刊文献+

一类年龄结构SEIR流行病模型的阈值分析

Threshold of an age-structured SEIR epidemic model with varying population size
下载PDF
导出
摘要 运用齐次动力系统理论讨论了一类总人口规模变化情况下的年龄结构的SEIR流行病模型,得到了与人口增长指数有关的基本再生数R0的表达式,并证明了当R0<1时,系统只存在无病平衡态;当R0>1时,系统存在地方病平衡态. A class of age-structured SEIR epidemic model with varying population size by using the theory of homogeneous dynamical systems is discussed.The explicit expression of the basic reproduction number R_0,which is relateded to the exponent of growth of total population,is obtained.It is proved that there is a disease-free equilibrium if R_0<1,and an epdemic equilibrium if R_0>1.
出处 《信阳师范学院学报(自然科学版)》 CAS 2004年第2期137-139,共3页 Journal of Xinyang Normal University(Natural Science Edition)
关键词 齐次动力系统 持续解 平衡态 homogenous dynamical system persistent solution steady states
  • 相关文献

参考文献5

  • 1[1]FELLER W.On the integral equation of renewal theory[J].Ann Math Stat,1941,12:243-267.
  • 2[2]IANNELLI M.Mathematical theory of age-structured population dynamics[M].Appllied Mathematics Monographs,Comitato Nazionale per le Scienze Matematiche,Consiglio Nazionale delle Ricerche(C.N.R.),Giardini,Pisa,1995.
  • 3[3]BUSENBERG S,CASTILLO-CHAVEZ C.A general solution of the problem of mixing of subpopulations and its application to risk and age-structured epidemic models for the spread of AIDS[J].IMA J Math Appl Med Biol,1991,8:1-29.
  • 4[4]HOPPENSTEADT F.An age structured epidemic model[J].J Franklin Inst,1974,197:325-333.
  • 5[5]LI X,GENI G,ZHU G.Mathematical theory of age-structured epidemic dynamics[J].Research Information Ltd UK,2002.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部