期刊文献+

四边形网格的削角细分 被引量:1

Corner-cutting subdivision scheme for quadrilateral meshes
下载PDF
导出
摘要 提出了一种四边形网格的削角细分方法(Corner-CuttingSubdivisionScheme).每细分一次,四边形网格数目增加为原来的两倍,两次细分结果相当于一次二分对偶细分(BinaryDualSubdivision)和一个旋转.细分算法采用线性细分加平滑的形式,具体地讲平滑是采用两次重复平均的方法,因此其生成曲面具有C1连续性.而且由于这种细分方法对网格几何操作简单,所得网格数据量增长相对缓慢,更适合于3D图像重构及网络传输等应用领域.. A new stationary corner-cutting subdivision scheme is presented for quadrilateral meshes, which differs from the Doo-Sabin subdivision. The number of quadrilaterals increases in every step by a factor of 2 instead of 4. Applying the subdivision twice is the same as one dyadic dual subdivision and a rotation. The dual subdivision scheme in this paper adopts linear subdivision plus the twice repeated averaging operation, so the resulting surface is C^1 continuous. The simplicity in geometric operation and the slow topological refinement make the subdivision scheme described in this paper more suitable for many applications, such as 3D image reconstruction and network transmission.
出处 《浙江大学学报(理学版)》 CAS CSCD 2004年第2期151-155,170,共6页 Journal of Zhejiang University(Science Edition)
关键词 四边形网格 削角细分 平滑 非规则点 corner-cutting subdivision scheme quadrilateral meshes extraordinary vertex
  • 相关文献

参考文献1

二级参考文献10

  • 1[1]Catmull, E.,Clark, J. Recursively generated B-Spline surfaces on arbitrary topological meshes. Computer Aided Design, 1978,10(6):350~355.
  • 2[2]Doo, D., Sabin, M. Behavior of recursive division surfaces near extraordinary points. Computer Aided Design, 1978,10(6): 356~360.
  • 3[3]Loop, C.T. Smooth subdivision surfaces based on triangle . Department of Mathematics, University of Utah, 1987.
  • 4[4]Dyn, N., Levin, D., Gregory, J. A. A butterfly subdivision scheme for surface interpolation with tension control. ACM Transactions on Graphics, 1999,9(2):160~169.
  • 5[5]Kobbelt, L. Interpolatory subdivision on open quadrilateral nets with arbitrary topology. In: Proceedings of the Eurographics'96 (1996). Computer Graphics Forum, 1996,15(3):409~420.
  • 6[6]Kobbelt, L.-Subdivision. In: Proceedings of the Siggraph'2000 (2000). Computer Graphics, 2000. 103~112.
  • 7[7]Ball, A., Storry, D. Conditions for tangent plane continuity over recursively generated B-Spline surfaces. ACM Transactions on Graphics, 1988,7(2):83~102.
  • 8[8]Halstead, M., Kass, M., DeRose, T. Efficient, fair interpolation using catmull-clark surfaces. Computer Graphics, 1993,27(3): 35~44.
  • 9[9]Reif, U. A unified approach to subdivision algorithms near extraordinary vertices. Computer Aided Geometric Design, 1995,12(2): 153~174.
  • 10[10]Zorin, D. Subdivision for modeling and animation. Siggraph 2000 course notes, 2000. http://www.multires.caltech.edu.

共引文献9

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部