摘要
在广义模糊测度空间的任一子集上,对给定的μ-可积模糊值函数,建立所谓广义模糊值Choquet积分,并将这种积分整体看成可测空间上取值于模糊数的集函数.首先,获得这种积分恰好构成模糊值(数)测度,其次,讨论当广义模糊测度满足次(超)可加,零可加和伪零可加性时,这种积分具有可传性.
On an arbitrary subset in generalized fuzzy measure spaces, We establish so-called generalized fuzzy valued Choquet integral for a given \$μ\$-integrable fuzzy valued function, regard the whole this kind of integrals as a set functions taken fuzzy numbers on the measurable spaces. First, we obtain that this kind of integrals exactly constitute fuzzy valued (number ) measures, and then, we discuss that this kind of integrals have transitivity when generalized fuzzy measures satisfy subadditivity, superadditivity, null-additivity and converse-null-additivity.
出处
《系统工程理论与实践》
EI
CSCD
北大核心
2004年第2期100-105,共6页
Systems Engineering-Theory & Practice
基金
天津市高校科技发展基金(20031410)
天津师范大学引进人才科研启动基金(1355RL016)
关键词
广义模糊测度
μ-可积
广义模糊值Choquet积分
次(超)可加
零可加
伪零可加
generalized fuzzy measures
\$μ\$-integrable
generalized fuzzy valued Choquet integrals
subadditivity
superadditivity
null-additivity
converse-null-additivity