期刊文献+

SCR技术制备Al-5Ti-0.25C合金的组织演化 被引量:2

Microstructure evolution of Al-5Ti-0.25C alloy formed by SCR technique
下载PDF
导出
摘要 利用SCR成形技术,使液固反应法获得的Al 5Ti 0.25C合金在强剪切应力场中凝固成形,制备了高细化活性的Al Ti C晶粒细化剂,对纯Al细化时其晶粒尺寸小于80μm。研究了SCR成形合金的微观结构及其形成机制。结果表明:SCR成形过程中合金熔体受到强烈剪切与热扰动作用,影响了自由晶TiC的迁移行为及TiAl3的溶解析出,从而改变了Al 5Ti 0.25C合金的组织形态;TiC粒子呈弥散分布以及与TiAl3形成二重粒子均能显著提高TiC粒子的形核能力。 The SCR(shear-cooling roll) technique was used to solidify dynamically and form directly from the melt of Al-5Ti-0.25C alloy to prepare Al-Ti-C grain refiners with high activity of refinement, with average grain size 80 μm in refining pure aluminum. The microstructure of SCR formed alloy and its formation mechanism were studied experimentally. It is shown that the strong shearing and heat disturbance action of SCR forming process on alloy melt affect the behavior of migration of free crystal TiC and the dissolution and precipitation of TiAl_3 and thus change the microstructural morphology of Al-5Ti-0.25C alloy. The dispersive distribution of TiC particles inside α(Al) and the formation of duplex particles of TiC particles with TiAl_3 can improve significantly the capability of nucleation of TiC particles.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2004年第3期445-449,共5页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学基金与宝钢基金联合资助项目(50274020)
关键词 液固反应法 制备 Al-5Ti-0.25C合金 组织 弥散分布 二重粒子 形核能力 SCR技术 铝合金 SCR forming Al-5Ti-0.25C alloy dispersive distribution duplex particles capability of nucleation
  • 相关文献

参考文献13

  • 1[1]Van P, Wiggen S, Belgraver J, et al. From Al-Ti-B to Al-Ti-C developments in aluminum grain refiners[J].Aluminum, 1999, 75(11): 989 - 994.
  • 2[2]Chneider M, Kearns M, Garry A. Comparison of the behavior of AlTiB and AlTiC grain refiners[A]. The 127th TMS Annual Meeting[C]. San Antio Texas USA: Light Metals, 1998, 15-19, 953-961.
  • 3[3]Whitehead A, Danilak S. The development of a commercial Al-3% Ti-0. 15% C grain refining alloy[J].Light Metals, 1997: 972-785.
  • 4[4]Hadia G A, Niazi A. Development and evaluation of Al-Ti-C master alloys as grain refinement for aluminum[J]. Light Metals, 1996.. 729 - 731.
  • 5[5]Vandyoussefi J, Worth A L, Greer A. Effect of instability of TiC particles on grain refinement of Al and AlMg alloys by addition of Al-Ti-C inoculants[J]. Materials Science and Technology, 2000, 16 (10): 1121 -1128.
  • 6[6]Banerji A, Reif W, Feng Q. Metallographic investigation of nucleants in the newly developed Al-Ti-C grain refiner[J]. Metall Mater Trans A, 1994, 17A: 1958-1964.
  • 7[7]ZHANG Zhong-hua, BIAN Xiu-fang, WANG Yan, et al. TEM observation of a rapidly solidified Al-Ti-C alloy[J]. Journal of Alloys and Compounds, 2003, 349:121- 128.
  • 8[9]Brinkman H J, Zupanic F, Duszczyk J. Production of Al-Ti-C grain refiner alloys by reactive synthesis of elemental powders(Part Ⅱ )-grain refining performance of alloys and secondary processing[J]. J Mater Res,2000, 15(12): 2628-2635.
  • 9[10]Tronche M, Vandyoussefi A. Instability of TiC particles in aluminum melts inoculated with an Al-Ti-C grain refiner[J]. Materials Science and Technology,2002, 1(18):1072-1078.
  • 10[13]Banerji A, Reif W. Development of Al-Ti-C grain refiners containing TiC[J]. Metall Mater Trans A,1986, 17A: 2127-2133.

同被引文献58

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部