期刊文献+

纳米TiO_2薄膜光催化降解苯酚和氯代苯酚的研究 被引量:6

PHOTOCATALYTIC DEGRADATION OF PHENOL AND CHLORINATED PHENOLS USING NANOMETER TiO2 THIN FILMS
下载PDF
导出
摘要 采用溶胶-凝胶法制备纳米TiO2薄膜,研究了初始浓度、pH和外加H2O2对TiO2薄膜光催化降解苯酚、对氯苯酚和2,4-二氯苯酚影响。结果表明,纳米TiO2薄膜对于苯酚和氯代苯酚均有较高的光催化活性,相同条件下,2,4-二氯苯酚的光催化降解速率>4-氯苯酚>苯酚。在本实验条件下,随着反应物初始浓度的升高,相同时间内,苯酚和氯代苯酚的降解效率均逐渐降低。在中性条件下,苯酚和氯代苯酚的光催化反应速率均强于酸性条件下,其中pH对苯酚光催化降解的影响幅度最大。适量的H2O2有助于提高苯酚和氯代苯酚光催化降解速率。 Photocatalytic degradation of phenol, 4-chlorophenol and 2, 4-dichlorophenol was investigated using TiO2 film prepared by sol-gel process. The effects of initial concentration, pH and the addition of H2O2 on the photoactivities of TiO2 thin film were studied. The results indicate that the TiO2 film has much higher photocatalytic activity on the degradation of phenol and chlorinated phenols. The photodegradation rates decrease in the sequence, 2,4-dichlorophenol>4-chlorophenol>phenol. For all of phenol, 4-chlorophenol and 2, 4-dichlorophenol, an increase in the molar influent concentration resulted in a decrease in removal efficiency. The photoactivities are greatly dependent on the solution pH, and it is more effective for phenol and chlorinated phenols to be degraded under neutral condition. It is likely to contribute for the acid-base equilibra on the surface of the nanoparticles. The proper addition of hydrogen peroxide can improve the degradation rate.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2004年第1期63-67,共5页 Acta Energiae Solaris Sinica
关键词 纳米材料 光催化 苯酚 氯代苯酚 Chlorination Degradation Nanostructured materials Phenols Photocatalysis Thin films Titanium dioxide
  • 相关文献

参考文献1

二级参考文献14

  • 1[1]Taborda A V, Brusa M A, Grela M A. Photocatalytic degradation of phthalic acid on TiO2 nanoparticles[J]. Applied Catalysis A: General, 2001, 208: 419-426
  • 2[2]Makarova O V, Rajh T, Thurnaure M C. Surface modification of TiO2 nanoparticles for photochemical reduction of nitrobenzene[J]. Environmental Science Technology, 2000, 34: 4797-4803
  • 3[3]Wu J, Uchida S, Fujishiro Y et al. Synthesis and photocatalytic properties of HNbWO6/TiO2 and HNbWO6/Fe2O3 nanocomposites[J]. Journal of Photochemistry Photobiology A: Chemistry, 1999, 129-133
  • 4[4]Yanagisawa M, Uchida S, Sato T. Synthesis and photochemical properties of Cu2+ doped layered hydrogen titanate[J]. International Journal of Material, 2000, 2: 339-346
  • 5[5]Yanagisawa M, Sato T. Synthesis and photocatalytic properties of titania pillared hydrogen tetratitanate using titanyl acylate precursor[J]. International Journal of Material, 2001, 3: 157-160
  • 6[6]Reutergardh L B, Iangphasuk M. Photocatalytic decolourization of reactive azo dye: A comparison between TiO2 and CdS photocatalysis[J]. Chemosphere, 1997, 35: 585-596
  • 7[7]El-Maazawi M, Finken A N, Nair A B et al. Adsorption and photocatalytic oxidation of acetone on TiO2: An in situ transmission FT-IR study[J]. Journal of Catalysis, 2000, 191: 138-146
  • 8[8]Matthews R W. An adsorption water purifier with in situ photocatalytic regeneration[J]. Journal of Catalysis, 1988, 113: 549-555
  • 9[9]Mishra T, Parida K. Transition metal pillared clay 4. A comparative study of textural, acidic and catalytic properties of chromia pillared montorillonite and acid activated montmorillonite[J]. Applied Catalysis A: General, 1998, 166: 123-133
  • 10[10]Salerno P, Asenjo M B, Mendioroz S. Influence of preparation method on thermal stability and acidity of Al-PILCs[J]. Thermochimica Acta, 2001, 379: 101-109

共引文献55

同被引文献51

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部