期刊文献+

关于一个非线性几何光学中的非严格双曲守恒律系统的研究(英文) 被引量:1

On a nonstrictly hyperbolic system of conservation laws in nonlinear geometric optics
下载PDF
导出
摘要 研究了一个产生于非线性几何光学中的非严格双曲守恒律系统.该系统具有强非线性流函数项,且狄拉克激波可能同时出现在解的两个状态变量中.通过未知函数的一个变换,该系统的非线性流函数项得到弱化,从而其黎曼问题被完全解决. This paper studies a non-strictly hyperbolic system of conservation laws with strong nonlinearity on the flux-functions arising in nonlinear geometric optics,whose solutions may contain delta shock waves in two state variables.By performing a transformation of unknown variables,the system is reduced to another one with weak nonlinearity on the flux-functions.Then the Riemann problem for the later is solved completely.
机构地区 云南大学数学系
出处 《纯粹数学与应用数学》 CSCD 2004年第1期1-5,23,共6页 Pure and Applied Mathematics
基金 国家自然科学基金(10226032).
关键词 非严格双曲系统 狄拉克激波 广义Rankine—Hugonoit条件 熵条件 non-strictly hyperbolic system,delta-shock,generalized Rankine-Hugoniot Relation,entropy condition.
  • 相关文献

参考文献6

  • 1Lax P D. Hyperbolic systems of conservation laws and the mathematical theory of shock waves [J].SIAM ,Philadelphia, 1973.
  • 2Li Jiequan,Yang Shuli,Zhang Tong. The two-dimensional Riemann problem in gas dynamics[M]. Longman Scientic and Technical, 1998.
  • 3Yang Hanchun. Riemann problems for a class of coupled hyperbolic systems of conservation laws[J]. J Differential Equations, 1999,159 : 447 - 484.
  • 4Lax P D. Hyperbolic systems of conservation laws and the mathematical theory of shock waves[J].SIAM. ,Philadelphia, 1973.
  • 5Li Jiequan,Yang Shuli,Zhang Tong. The two-dimensional Riemann problem in gas dynamics[M]. Longman Scientic and Technical,1998.
  • 6Yang Hanchun, Riemann problems for a class of coupled hyperbolic systems of conservation laws[J]. J.Differential Equations, 1999,159: 447-484.

共引文献1

同被引文献13

  • 1Bouchut F. On zero-pressure gas dynamics [J]. Advances in kinetic theory and computing, Series on Advances in Mathematics for Applied Sciences, 1994,22:171-190.
  • 2Li Y, Cao Y. Large partial difference method with second accuracy in gas dynamics [J]. Scientific Sinica (A), 1985, 28:1024-1035.
  • 3Agarwal R K, Halt D W. A modified CUSP scheme in wave/particle split form for unstructured grid Euler flows, Frontiers of Computational Fluid Dynamics [M]. edited by D. A. Caughey and M. M. Hafes, John Wiley and Sons, 1994.
  • 4Yu W E, Rykov G, Sinai Ya G. Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics [J]. Comm. Math. Phys., 1996, 177:349-380.
  • 5Shandarin S F, Zeldovich Ya B. The large-scale structure of the universe: Turbulence, intermittency, structure in a self-gravitating medium [J]. Rev. Mod. Phys., 1989, 61:185-220.
  • 6Sheng Wancheng, Zhang Tong. The Riemann problem for transportation equation in gas dynamics [J]. Mem.Amer.Math.Soc., 1999, 137(654).
  • 7Li Jiequan, Zhang Tong. Generalized rankine-hugoniot conditions of weighted dirac delta waves of transportation quation, in "Nonlinear PDE and Related Areas" [M]. Sngapore: World Scientific, 1998.
  • 8Li Jiequan, Yang Shuli, Zhang Tong. The two-dimensional Riemann problem in gas dynamics [M]. Longman Scientific and Technical, 1999.
  • 9Tan Dechun, Zhang Tong, Two dimensional riemann problem for a hyperbolic system of nonlinear conservation laws(Ⅰ)Four-J cases [J]. J. Differential Equations, 1994, 111:203-254.
  • 10Tan Dechun, Zhang Tong, Zheng Yuxi. Delta shock waves as limits of vanishing viscosity for hyperbolic systems of conversation laws [J]. J. Differential Equations, 1994, 112(1):1-32.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部