期刊文献+

分次遗传三角矩阵环

Graded Hereditary Triangular Matrix Rings
下载PDF
导出
摘要 设Ω是一个具有左 (右 )消去律的Monoid .给定两个有 1的Ω 分次环A = x∈MAx 和B = x∈MBx 以及一个Ω 分次 (A ,B) 双模V =SVT = x∈MVx,由它们确定一个Ω 分次三角矩阵环T =AV0B = x∈MAx Vx0Bx.本文证明T是分次右遗传环当且仅当 (i) A和B都是分次右遗传环 ;(ii) AV是平坦模 ;(iii)对任何K ≤grAA,(V/KV) B 是投射模 . Let Ω be a multiplicative left(right) cancellative Monoid.Given two Ω- graded rings with 1 , A=x∈MA_x and B=x∈MB_x ,and a Ω- graded (A,B) -bimodule V= _SV_T=x∈MV_x, they determind a graded triangular matrix ring T=AV 0B=x∈MA_xV_x 0B_x. In this paper,we show that T is graded right hereditary ring if and only if (i) A and B are both graded right hereditary;(ii) _AV is flat;(iii) (V/KV)_B is projective for all K≤grA_A.
作者 王尧
出处 《鞍山师范学院学报》 2004年第2期1-4,共4页 Journal of Anshan Normal University
基金 国家自然科学基金 (批准号 :10 2 710 176)
关键词 分次遗传三角矩阵环 投射模 平坦模 张量积 分次理想 Projective module Flat module Graded right hereditary ring
  • 相关文献

参考文献8

  • 1[1]NASTASESCU C,OYSTAEYEN F VAN.Graded Ring Theory[M].Math Library vol.28,Amsterdam:North-Holland Publishing Company,1982.
  • 2任艳丽,王尧.分次三角矩阵环的性质[J].吉林大学学报(理学版),2003,41(4):458-462. 被引量:3
  • 3王尧,任艳丽.分次非奇异三角矩阵环[J].吉林大学学报(理学版),2004,42(4):503-507. 被引量:2
  • 4[4]ANDERSON F W,FULLER K R.Rings and Categories of Modules[M].GTM 13.Berlin:Springer-verlag,1974.
  • 5[5]熊金淹.环论[M].武汉:武汉大学出版社,1993.
  • 6[6]HUANYIN CHEN.On the Structure of Triangular Matrix Rings[J].J Nanjing Univ Math Biquarterly,1999,16(2):153-157.
  • 7[7]GOODEARL K R.Ring Theory-Nonsingular Rings and Modules[M].New York and Basel:Marcel Dekker,Inc.1976.
  • 8[8]KARPILOVSKY G.The Jacobson Radical of Classical Rings[M].New york:John Wiley & Sons Inc,1991.

二级参考文献10

  • 1[2]Kapplovsky G. The Jacobon radical of classical rings [M]. New York: John Whiley & Sons Inc, 1991.
  • 2[3]Goodearl K R, Warficcld R B. An introduction to noncommutative rings [M]. London Math Soc Student Texts16. Cambridge: Cambridge University Press, 1989.
  • 3[5]Nastasescu C, Oystaeyen F Van. Graded ring theory [M]. Math Library Vol.28. Amsterdam: North-Holland Publishing Company, 1982.
  • 4[6]Goodearl K R. Ring theory--nonsingular rings and modules [M]. New York: Marcel Dekker, 1996.
  • 5Karpilovsky G. The Jacobson Radical of Classical Rings[M]. New York: John Wiley & Sons Inc, 1991. 159-192.
  • 6Lam T Y. A First Course in Noncommutative Rings [M]. GTM 131. New York: Springer-Verleg, 1996. 51-380.
  • 7Hartwing R E, Luh J. On Finite Regular Rings[J]. Pacific J Math, 1977, 69: 73-95.
  • 8WangYao(王尧).Graded Jacobson Radical of Graded Rings(分次环的分次Jacobson根).Actn Mathematica Sinica(数学学报),1998,41(2):347-354.
  • 9王尧.分次环的分次Jacobson根[J].数学学报(中文版),1998,41(2):347-354. 被引量:31
  • 10王尧,任艳丽.分次环的Block分解[J].吉林大学学报(理学版),2002,40(2):131-134. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部