期刊文献+

量子点量子阱中的三阶非线性光学特性的研究(英文) 被引量:5

Studies on the Third-order Nonlinear Optical Properties of a Quantum Dot Quantum Well
下载PDF
导出
摘要 利用紧致密度矩阵近似方法,研究了一个特殊量子点量子阱中的三阶非线性光学特性(三次谐波产生),得到了量子点量子阱系统的三次谐波产生系数的解析表达式,而且考虑了量子点量子阱系统中的两种电子束缚态-壳层阱内与阱外两种束缚态。对CdS/HgS构成的典型的量子点量子阱进行了数值计算,得到了10-15(m/v)2量级的三次谐波产生系数,并且绘出了三次谐波产生系数作为量子点量子阱的尺寸和泵浦光子能量的函数曲线,最后对曲线的特征及其形成的原因进行了解析。 The third-order nonlinear optical properties of a quantum dot quantum well (QDQW) are theoretically investigated. The analytic formula for the third-harmonic generation (THG) coefficient of a QDQW is obtained by using compact density matrix treatment, both the bound electronic states inside and outside the spherical shell well are taken into account. The numerical results are carried out on the classic CdS/HgS QDQW, and the THG coefficient reaches the magnitude of 10~-15 (m/V)~2. Finally, the THG coefficient is plotted versus the QDQW size, the photon energy, and the features of these curves are specified and the reasons are explained.
作者 张立
出处 《量子光学学报》 CSCD 2004年第1期5-10,共6页 Journal of Quantum Optics
关键词 量子点 量子阱 三阶非线性光学 紧致密度矩阵近似 三次谐波 束缚态 量子光学 Quantum dot quantum well Compact density matrix approach Third- harmonic generation
  • 相关文献

参考文献2

二级参考文献27

  • 1[1]Kazarinov R F, Suris R A. Possibility of the amplification of electromagnetic waves in a semiconductor with a super-lattice. Sov Phys Semicond, 1971, 5(3): 707~709
  • 2[2]Capasso F, Mohammed K, Cho A Y. Resonant tunneling through double barriers, perpendicular quantum transport phenomena in super-lattice, and their device applications. IEEE J Quantum Electron, 1986, QE-22(10):1853~1869
  • 3[3]Miller D A B. For a review of quantum-well switching devices and other device. Int J High Speed Electron, 1991, 1(1): 19~23
  • 4[4]Leug Tsang, Shun-Lien Chuang, Shing M.Lee. Second-order nonlinear optical susceptibility of a quantum well with an applied field. Phys Rev(B), 1990,41(9): 5942~5951
  • 5[5]Khurgin J. Second-order nonlinear effects in asymmetric quantum well structures. Phys Rev(B), 1988, 38(6): 4056~4066
  • 6[6]Atanasov R, Bassani F. Second-order nonlinear optical susceptibility of asymmetric quantum well. Phys Rev(B), 1994, 50(11): 7809~7819
  • 7[7]Rosencher E, Bois Ph. Model system for optical nonlinearities: Asymmetric quantum wells. Phys Rev(B), 1991, 44(20): 11315~11327
  • 8[8]Gurnick M K, Detemple T A. Synthetic nonlinear semiconductors. IEEE J Quantum Electon, 1983, QE-19(5): 791~794
  • 9[9]Khurgin J. Second-order intersubband nonlinear optical susceptibilities of asymmetric quantum well structures. Optical Society of America, Washington DC, 1989.69~72
  • 10[10]Yuh P F, Wang K L. Optical second-order susceptibility of asymmetric coupled well structures in the exciton region. J Appl Phys, 1989, 65(1): 4377~4381

共引文献7

同被引文献19

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部