期刊文献+

氨气浓度对碳纳米管生长影响的研究 被引量:7

Study on Influences of Ammonia Concentration on Growth of Carbon Nanotubes
下载PDF
导出
摘要 利用等离子体增强化学气相沉积系统,用CH4、NH3和H2为反应气体,在沉积有100nm厚Ta过渡层和60nm厚NiFe催化剂层的Si衬底上制备了碳纳米管,并用扫描电子显微镜研究了它们的生长和结构。结果表明当氨气浓度为20%、40%和60%时,碳纳米管的平均长度分别为3.88μm、4.52μm和6.79μm,而其平均直径变化不大,均在240nm左右。最后,分析讨论了氨气浓度对碳纳米管生长和结构的影响。 Carbon nanotubes were synthesized on Si substrates deposited with 100nm Ta buffer and 60nm NiFe films in plasma-enhanced chemical vapor deposition system using CH_4, NH_3 and H_2, and their growth and structure were investigated by scanning electron microscopy. The results indicate that the average length of the carbon nanotubes is 3.88μm, 4.52μm and 6.79μm when the concentration of NH_3 is 20%, 40% and 60%, respectively, and their average diameter is seldom changed with the concentration of NH_3, they are all about 240nm. Finally, the influences of ammonia concentration on the growth of carbon nanotubes were analyzed and discussed.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2004年第1期100-104,共5页 Journal of Synthetic Crystals
关键词 氨气 浓度 碳纳米管 生长速率 化学气相沉积系统 反应气体 过渡层 carbon nanotubes ammonia concentration growth rate
  • 相关文献

参考文献2

二级参考文献15

  • 1张志琨 崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000,10..
  • 2GRoeNING O, KüTL M, EMMENGGER C H, et al.Field emission properties of carbon nanotubes [ J ]. J Vac Sci Technol, 2000, B 18(2) : 665 -678.
  • 3HAHADA N, SAWADA S, OSHIYAMA A. New one -di-mensional conductors: Graphite microtubules[ J]. Phys Rev Lett, 1992, 68(10): 1 579-1 581.
  • 4YU J, ZHANG Q, AHN J, et al. Field emission from pattemed carbon nanotube emitters produced by microwave plasma chemical vapor deposition [ J ]. Diamond Related and Materials, 2001, 10:2 157 -2 160.
  • 5CHHOWALL& M, TEO K B, DUCATI C, et al. Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition[J]. J Appl Phys. 2001.90(10):5 308-5 317.
  • 6KUKOVITSKY E F, LVOV S G, SAINOV N A,et al. Correlation between metal catalyst particle size and carbon nanotube growth[J]. Chem Phys Lett, 2002; 355:497 -503.
  • 7TIBBETTS G G. Why are carbon filaments tubular? [J]. J Cryetal Growth, 1984, 66:632-638.
  • 8LEE. C J, LYU S C, CHO Y R, et al. Diameter- controlled growth of carbon nanotubes using thermal chemical vapor deposition[J]. Chem Phys Lett, 2001, 341 : 245 -249.
  • 9LEE H, KANG Y S, LEE P S, et al. Hydrogen plasma treatment on catalyst layer and effect of oxygen additions on plasma enhanced chemical vapor deposition of carbon nanotubes[ J ]. Journal of alloys and compounds, 2002, 330 :569 - 573.
  • 10LI W Z, WANG D Z, YANG S X, et al. Controlled growth of carbon nanotubes on graphite foil by chemical vapor deposition[J]. Chem Phys Lett, 2001, 335 : 141 - 149.

共引文献2

同被引文献51

  • 1王青,戴剑锋,李维学,马勤,魏智强.碳纳米管的制备参数研究[J].兰州理工大学学报,2004,30(6):27-29. 被引量:10
  • 2Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991,354: 6-58.
  • 3Treaey M M J, Ebbesen T W, Gibson J M. Exceptionally high young smodulus observed for individual carbon nanotubes [J]. Nature, 1996, 381 : 678-680.
  • 4Saito R, Fuiita M, Dresselhaus G, et al. Electronic structure of chiral graphene tububles [J]. Appl Phys Lett, 1992, 60: 2204-2206.
  • 5Lee C J, Park J. Growth model of bamboo shaped carbon nanotubes by thermal chemical vapor deposition[J]. Appl Phys Lett, 2000, 77: 3397-3399.
  • 6Yoon Y J, Baik H K. Catalytic growth mechanism of carbon nanofibers through chemical vapor deposition[J]. Diamond Relat Mater, 2001,10: 1214-1217.
  • 7Iijima S. Helical microtubes of graphitic carbon [J]. Nature, 1991, 354: 56-58.
  • 8Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes[J]. Science, 1997, 277:1971-1975.
  • 9Saito R, Fujita M, Dresselhaus G, et al. Electronic structure of chiral graphene tubules [J] .Appl Phys Lett, 1992, 60: 2204- 2206.
  • 10Ingold J H. Gaseous Discharge[ M]. New York:Academic Press, 1978.

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部