期刊文献+

FIXED POINTS OF THE lTH POWER OF DIFFERENTIAL POLYNOMIALS GENERATED BY SOLUTIONS OF DIFFERENTIAL EQUATIONS

FIXED POINTS OF THE lTH POWER OF DIFFERENTIAL POLYNOMIALS GENERATED BY SOLUTIONS OF DIFFERENTIAL EQUATIONS
原文传递
导出
摘要 In this paper,we study the problem on the fixed points of the lth power of linear differential polynomials generated by second order linear differential equations.Because of the control of differential equation,we can obtain some precise estimate of their fixed points.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2004年第2期271-280,共10页 系统科学与复杂性学报(英文版)
基金 This research is supported by the National Natural Science Foundation of China(No. 10371065) the Natural Science Foundation of Shandong Province, China(No. Z2002A01).
关键词 second order differential equation fixed point differential polynomial order HYPER-ORDER 不动点 微分多项式 微分方程 亚纯函数
  • 相关文献

参考文献9

  • 1W. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
  • 2Y. Z. He and X. Z. Xiao, Algebroid Functions and Ordinary Differential Equations, Science Press,Beijing, 1988.
  • 3S. Bank and I. Laine, On the oscillation theory of f" + Af = 0, where A is entire , Trans. Amer.Math. Soc., 1982, 273: 351-363.
  • 4H. X. Yi and C. C. Yang, The Uniqueness Theory of Meromorphic Function, Science Press, Beijing,1995.
  • 5Z. X. Chen, The fixed points and hyper order of solutions of second order complex differential equations, Acta Mathematica Scientia, 2000, 20(3): 425-432.
  • 6G. Jank and L. Volkmann, Einfiihrung in die Theorie der ganzen und Meromorphen Fhanktionenmit Anwendungen auf Differentialgleichungen, Birkhguser, Basel-Boston, 1985.
  • 7Z. X. Chen and C. C. Yang, Some further results on the zeros and growths of entire solutions of second order linear differential equation, Kodai Math. J., 1999, 22: 273-285.
  • 8W. Hayman, The local growth of power seriers: a survery of the Wiman-Valiron method, Canad.Math. Bull., 1974, 17: 317-358.
  • 9G. Valiron, Lectures on the General Theory of Intergral Functions, Chelsea, New York, 1949.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部