期刊文献+

具有年龄结构的捕食系统的动力学行为 被引量:1

Dynamics of Predator-prey System with Age Structure
下载PDF
导出
摘要 研究了一类捕食者具有年龄结构的捕食系统的动力学行为 .应用差分方程的比较原理 ,离散半动力系统的持久性定理以及单调算子的三分稳定性 ,获得系统的有界性 ,一致持久性 ,永久持久性 . This article studies the dynamical action of a predator-prey system with age structure. Using the comparion theorem of difference equation, persistence theorem of discrete semi-dynamical system and stability of monotonous operator, we gain the boundary, uniform persistence and permanence of the system.
出处 《南京师大学报(自然科学版)》 CAS CSCD 2004年第1期13-19,共7页 Journal of Nanjing Normal University(Natural Science Edition)
基金 国家自然科学基金资助 (编号 198710 41)
关键词 年龄结构 捕食系统 动力学 弱持久 强持久 一致持久 永久持久 weak persistence, strong persistence, uniform persistence, permanence
  • 相关文献

参考文献9

  • 1Cushing J M. An Introduction to Structured Population Dynamics[ J]. Society for Industrial and Applied Mathematics, Tucson, Arizona, 1998.
  • 2Allen Is, Moulon Mp, Rose F L. persistence in an age-structured population for a patch-type enviroment[J]. Natural Resource Modeling. 1990,4:197-214.
  • 3Vivian Hutson, Klaus Schmitt. Permanence and the Dynamics of Biological System[ M]. New York: Elsevier Science Publishing Co Inc, 1992.14-15.
  • 4Cull P Local, Globial. Stability for Population Models[Jl. Biol Cybem, 1986,54: 141-149.
  • 5谭远顺,魏代俊.具年龄结构的离散捕食系统的动力学行为[J].湖北民族学院学报(自然科学版),2002,20(1):41-45. 被引量:1
  • 6Cushing J M. An Introduction to Structured Population Dynamics[J]. Society for Industrial and Applied Mathematics,Tucson,Arizona,1998.
  • 7Allen Is,Moulon Mp,Rose F L.persistence in an age-structured population for a patch-type enviroment[J]. Natural Resource Modeling.1990,4:197-214.
  • 8Vivian Hutson,Klaus Schmitt.Permanence and the Dynamics of Biological System[M]. New York: Elsevier Science Publishing Co.Inc,1992.14-15.
  • 9Cull P Local, Globial. Stability for Population Models[J]. Biol Cybern,1986,54:141-149.

二级参考文献1

  • 1陈兰荪.数学生态学模型与研究方法[M].北京:科学出版社,1991.108-111.

同被引文献7

  • 1Bazykin A D.Nonlinear Dynamics of Interacting Populations[M].Singapore:World Scientific,1998.
  • 2Wang M X,Wu Q.Positive solutions of a prey-predator model with predator saturation and competition[J].J Math Anal Ap pl,2008,345(2):708-718.
  • 3Chen W Y,Wang M X.Qualitative analysis of predator-prey models with Beddington-Deangelis functional responses and diffusion[J].Math Comp Modelling,2005,42(1/2):31-44.
  • 4Pao C V.Nonlinear Parabolic and Elliptic Equauons[M].New York:Plenum Press,1992.
  • 5Delgado M,López-Gómez J,Suarez A.On the symbiotic Lotka-Volterra model with diffusion and transport effects[J].J Differential Equations,2000,160(1):321-349.
  • 6López-Gómez J,Pardo R M.Existence and uniqueness of coexistence states for the predator-prey model with diffusion in the scalar case[J].Extracta Math,1991,6(2):115-118.
  • 7陈滨,王明新.带有扩散和Beddington-DeAngelis响应函数的捕食模型的正平衡态[J].数学年刊(A辑),2007,28(4):495-506. 被引量:9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部