期刊文献+

用混合遗传算法进行工程智能优化的方法研究 被引量:1

Research on Method of Engineering Intelligence Optimization with Hybrid Genetic Algorithm
下载PDF
导出
摘要 智能优化是从诸多新兴学科衍生出来的前沿科学,遗传算法是智能优化的重要工具之一。该文针对遗传算法存在的不足,用混合遗传算法解决了工程智能优化问题,弥补了遗传算法存在的缺陷,在工程实践中证明了混合遗传算法在性能和质量方面的优越性。 Intelligence optimization is a leading science derived from many new subjects.Genetic algorithm is one of im-portant tools of intelligence optimization.This paper is about solving problem of engineering intelligence optimization with hybrid genetic algorithm.Genetic algorithm 's deficiency is mode up by it.The superiority of it is testified on function and quality in engineering practice.
作者 崔明义
出处 《计算机工程与应用》 CSCD 北大核心 2004年第10期40-41,110,共3页 Computer Engineering and Applications
基金 国家自然科学基金资助(编号:50104011)
关键词 智能优化 混合遗传算法 改进模拟退火法 intelligence optimization,hybrid genetic algorithm,simulated annealing improved
  • 相关文献

参考文献7

  • 1M J Mihaljevic,J Dj Golic.A fast iterative algorithm for a shift register initial state reconstruction given the noisy output sequence[C].In:Advances in Cryptology-AUSCRYPT'90,Springer-Verlag,1990;LNCS 453:165~175.
  • 2Mahfoud S W,Goldberg D E.A Genetic Algorithm for Parallel Simulated Annealing[C].In:Parallel Problem Solving from Nature 2,North Holland,1992:301~310.
  • 3CUI Mingyi,HU Hua.Realizing of Optimization of Binder Baclfill Material under Certain Strength with Fuzzy Sets[J].Journal of University of Mining & Technology,2001;11(2):147~149.
  • 4孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1996-06.78-89.
  • 5崔明义,孙恒虎.基于MATLAB的胶结充填材料线性回归研究[J].矿冶工程,2002,22(3):11-12. 被引量:7
  • 6崔明义,孙恒虎.用VC++6.0实现胶结充填材料质量控制[J].有色金属(矿山部分),2002,54(2):15-16. 被引量:2
  • 7崔明义,孙恒虎.模糊集合在等强度胶结充填材料优化中的应用[J].有色金属,2002,54(3):97-98. 被引量:1

二级参考文献5

  • 1张宜华.精通MATLAB5[M].北京:清华大学出版社,1999..
  • 2RobertD.Thompson 前导工作室(译).MFC开发人员参考手册[M].北京:机械工业出版社,1998.621-634.
  • 3徐树岚 苏家宏.-[J].充填采矿法,1999,:113-135.
  • 4孙恒虎 刘文永 等.高水固经充填采矿[M].北京:机械工业出版社,1998.186-186.
  • 5孙恒虎 刘文永 等.高永固结充填采矿[M].北京:机械工业出版社,1998.186-202.

共引文献6

同被引文献6

  • 1Homik K M,Stinchcornbe M,White H.Multilayer Feedforward Networks Are Universal Approximators[J].Neural Networks, 1989;2(2):359-366.
  • 2Hansen L K,Salamon P.Neural Network Ensembles[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990;12( 10):993-1001.
  • 3N Garcia-Pedrajas,C Hervas-Martinez,J Munoz-Perez.COVNET:a cooperative coevolutionary model for evolving artificial neural networks[J].IEEE Trans Neural Networks, 2003;14 (3) : 575-596.
  • 4S Kirkpatrick,C D Gelatt Jr,M P Vecchi.Optimization by simulated annealing[J].Science, 1983 ; 220:671 -680.
  • 5N Garcia-Pedrajas,C Hervas-Martinez,J Munoz-Perez.Multiobjective cooperative coevolution of artificial neural networks[J].Neural Networks, 2002; 15( 10):1255-1274.
  • 6E Zitzler.Evolutionary algorithms for multiobjective optimization:methods and applications[D].Ph D Thesis.Eidgenossische Technische Hochschule Zurich, 1999-11.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部