摘要
讨论了数据挖掘与机器学习对于扩充知识库的异同 ,分析了知识库、数据库与数据挖掘在知识系统中的关系 .提出了一种基于 XML 的知识表示方法 XKR(XML- based Knowledge Representation) .XKR用 XML 作为统一的形式描述语言 ,把产生式、框架、语义网络、过程表示法等等多种传统的表示方法融合到一起 .由于 XML本身包含语义并能够无限扩充 ,所以 XKR可以描述不同背景不同类型的知识 ,实现知识融合 .通过应用实践发现 XKR知识库有优点也有缺陷 。
Data mining(DM) and machine learning(ML) are both popular term in knowledge system. They are very similar in some sense but not identical the same. We use data mining to expand a knowledge repository in order to exploit huge amount data in knowledge system. XKR(XML based Knowledge Representation), a unified formula description language based on XML, is presented to integrate several traditional knowledge representations such as production, frame, semantic net, process and so on. Because of XML can contain semantic itself, XKR is able to describe knowledge of various backgrounds and types so that we implemented knowledge fusion on it. With some applications we find highlights of XKR knowledge repository though there are drawbacks needed to improve.
出处
《小型微型计算机系统》
CSCD
北大核心
2004年第4期621-624,共4页
Journal of Chinese Computer Systems
基金
国家 8 63计划课题 ( 2 0 0 1AA115 410 )资助
教育部"高校网上合作中心平台建设"项目 (教计司〔2 0 0 1〕2 15号通知函 )资助
关键词
数据挖掘
知识库
XML
data mining
knowledge repository
XML