期刊文献+

基于关联规则的零部件供应商选择优化 被引量:4

Optimization of Components Suppliers' Selection Based on Association Rule
下载PDF
导出
摘要 制造企业通过数据挖掘可发现产品零部件故障与不同环境因素之间的联系,能有效地降低产品全生命周期中的维护成本与零部件物流成本的途径,由此提出了面向产品维护成本与零部件物流成本的备件供应商选择优化模型,并使用关联规则确定模型中的环境变量,提出了针对应用问题的关联规则处理策略,以便于对所发现知识的理解和利用。通过一个应用实例,证明提出方法的可行性和有效性。在此基础上设计和实现了面向产品全生命周期的零部件供应商选择支持系统。 On the basis of studying the relations between fault patterns of products and various environment factors through association rule mining, a joint optimization model of the costs of product maintenance and components delivery is presented through association rule based components suppliers' selection. To facilitate human understanding, a multi-strategy post-processing method of the association rules found in dataset is presented, and the further use of knowledge is studied. An example demonstrates the validity of the approach. Finally, the components suppliers' selection system for product life cycle is designed and implemented.
出处 《计算机集成制造系统-CIMS》 EI CSCD 北大核心 2004年第3期317-321,335,共6页
基金 国家863/CIMS主题资助项目(2002AA413310) 国家自然科学基金资助项目(60084004)。~~
关键词 零部件供应商选择 优化 物流配送 产品维护 故障模式 数据挖掘 关联规则 制造企业 supplier selection logistics delivery product maintenance fault pattern data mining association rule
  • 相关文献

参考文献6

  • 1[2]HUALLACHAIN B O,WASSERMAN D.Vertical integration in a lean supply chain:brazilian automobile component parts[J]. Economic Geography,1999, 75(1): 21-42.
  • 2[4]THEDE A,SCHMIDT A,MERZ C. Integration of goods delivery supervision into e-commerce supply chain[Z]. WELCOM,2001.206-218.
  • 3[5]ZAIKIN O,DOLGUI A,KORYTKOWSKI P. Optimization of resource allocation in distributed production networks[Z]. CEEMAS, 2001.322-331.
  • 4[6]HAMMER J,SCHMALZ M,BRIEN W O, SHEKAR S,HALDEVNEKAR N. Seeking knowledge in legacy information systems to support interoperability[A]. ECAI-02 Workshop on Ontologies and Semantic Interoperability[C]. Lyon, France,2002.21-26.
  • 5[7]AGRAWAL R,SRIKANT R. Fast algorithms for mining association rules in large databases[R]. San Jose CA:In Research Report RJ9839, IBM Almaden Research Center,1994.
  • 6[8]AGRAWAL R. IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases[A].ACM Proc. ACM SIGMOD Conference on Management of Data[C].Washington D C,1993.207-216.

同被引文献35

  • 1陆介平,杨明,孙志挥,鞠时光.快速挖掘全局最大频繁项目集[J].软件学报,2005,16(4):553-560. 被引量:27
  • 2张长海,胡孔法,陈凌.序列模式挖掘算法综述[J].扬州大学学报(自然科学版),2007,10(1):41-46. 被引量:5
  • 3Park J S, Psy U. An efficient parallel data mining for association rules [ C ]//Proc of the 4th on Information and Knowledge Management. New York: ACM Press, 1995 : 31 - 36.
  • 4Cheung D W, Hart J, Ng V T, et al. A fast distributed algorithm for mining association rules [ C ]//Proc of the 4th International Conference on Parallel and Distributed Information Systems. Los Alamitos, USA:IEEE Computer Society Press, 1996 : 31 - 44.
  • 5Zaki M. Spade: an efficient algorithm for mining frequent sequences [ J]. Machine Learning, 2001, 41 (2) : 31 -60.
  • 6Pei J, Han J, Pinto H, et al. PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth [ J ]. IEEE Transactions on Knowledge & Data Engineering, 2004,16( 1 ) : 1424 - 1440.
  • 7Zhang Changhai, Hu Kongfa, Liu Haidong, et al. FMGSP: an efficient method of mining global sequential patterns[ C ]//Proc of the 4th International Conference on Fuzzy Systems and Knowledge Discovery. Los Alamitos : IEEE Computer Society, 2007 : 761 - 765.
  • 8Srikant R, Agrawal R. Mining sequential patterns: generalizations and performance improvements [ C ]// Proc of 5th International Conference on Extending Database Technology. Heidelberg : Springer, 1996 : 3 - 17.
  • 9Han J, Kamber M. Data mining concepts and techniques [ M ]. 2nd ed. 北京:机械工业出版社, 2006 : 489 - 513.
  • 10Park J S;Chen M S;Yu P S.Efficient Parallel Data Mining for Association Rules,1995.

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部