期刊文献+

移动荷载作用下板式轨道的有限元分析 被引量:36

Finite element analysis of slab track subjected to moving load
下载PDF
导出
摘要 用有限元法分析了板式轨道在移动荷载作用下的动力响应。视板式轨道为如下模型:钢轨为离散粘弹性支点支承的长梁;轨道板为连续粘弹性基础支承的短梁。视板式轨道及移动荷载为一个系统,运用弹性系统动力学总势能不变值原理及形成矩阵的"对号入座"法则建立该系统的振动方程组。研究了移动荷载的速度、钢轨的类型和钢轨支点的弹性系数对钢轨及轨道板动力响应的影响。算例结果表明:在其他参数相同的情况下,增大钢轨支点的弹性系数,钢轨的动力响应减小;使用较重型的钢轨有利于减小钢轨和轨道板的动力响应;随着移动荷载速度的提高,钢轨和轨道板的动力响应增大。 A finite element method was applied to analyze the dynamic response of slab track subjected to a moving load. The slab track was treated as a model, in which rail was regarded as a long beam supported by discrete viscoelastic supports, and slab as a short beam supported by continuously viscoelastic foundation. The slab track and moving load were considered as a system. Vibration equations of the system could be formulated by using the principle of total potential energy with stationary value in elastic system dynamics and the 'set-in-right-position' rule for formulating matrixes. The effects of the speed of the moving load, the rail type, and the spring stiffness of rail support on the response of rail and slab were studied. From the presented numerical examples, when the other parameters being the same, with the increasing of spring stiffness of rail support, the dynamic response of rail decreases; with the increasing of rail type, the dynamic response of rail and slab decreases; with the increasing of moving load speed, the dynamic response of rail and slab increases.
作者 娄平 曾庆元
出处 《交通运输工程学报》 EI CSCD 2004年第1期29-33,共5页 Journal of Traffic and Transportation Engineering
基金 国家自然科学基金项目(50078006) 铁道部科技研究开发计划项目(2001G029) 教育部博士点基金项目(20010533004)
关键词 铁道工程 板式轨道 有限元法 移动荷载 动力响应 结构分析 Dynamic response Finite element method Foundations Loads (forces) Potential energy Stiffness Structural analysis Viscoelasticity
  • 相关文献

参考文献12

  • 1曾庆元.弹性系统动力学总势能不变值原理[J].华中理工大学学报,2000,28(1):1-3. 被引量:96
  • 2Tsunehiko SAITO. Stress analysis of concrete track slabs on an elastic foundation by the finite element method[J]. Quarterly Reports of Railway Technical Research Institute, 1974,15(4): 186-190.
  • 3Tong P, Rossettos J N. Finite-Element Method: Basic Technique and Implementation[M]. Cambridge: The MIT Press,1977.
  • 4ZENG Qing-yuan, LOU Ping, XIANG J un. The principle of total potential energy with stationary value in elastic system dynamics and its application to the analysis of vibration and dynamic stabilityEJ]. Journal of Huazhong University of Scienceand Technology ( Urban Science), 2002,19 ( 1 ) : 7- 14.
  • 5LOU Ping,ZENG Qing-yuan. On three approaches to formulation of the equations of motion of a dynamic system[J]. Journal of Structural Engineering, 2002, 29(2): 119-123.
  • 6曾庆元 杨平.形成矩阵的“对号入座”法则与桁粱空间分析的桁段有限元法[J].铁道学报,1986,8(2):48-48.
  • 7娄平,曾庆元.移动荷载作用下连续粘弹性基础支承无限长梁的有限元分析[J].交通运输工程学报,2003,3(2):1-6. 被引量:17
  • 8Tsunehiko SAITO. Stress analysis of concrete track slabs on an elastic foundation by the finite element method[J]. Quarterly Reports of Railway Technical Research Institute, 1974,15(4):186 -190.
  • 9Tong P, Rossettos J N. Finite-Element Method: Basic Technique and Implementation[M]. Cambridge: The MIT Press,1977.
  • 10ZENG Qing-yuan,LOU Ping,XIANG Jun. The principle of total potential energy with stationary value in elastic system dynamics and its application to the analysis of vibration and dynamic stability[J]. Journal of Huazhong University of Science and Technology

二级参考文献20

  • 1曾庆元,杨毅,骆宁安,江锋,张麒.列车-桥梁时变系统的横向振动分析[J].铁道学报,1991,13(2):38-46. 被引量:50
  • 2曾庆元 杨平.形成矩阵的“对号入座”法测与桁梁空间分析的桁段有限元法[J].铁道学报,1986,8(2):48-59.
  • 3曾庆元 杨平.形成矩阵的“对号入座”法则与桁梁空间分析的桁段有限元法[J].铁道学报,1986,8(2).
  • 4Yoshida D M , Weaver W. Finite element analysis of beams and plates with moving loads [J ]. Publication of International Association for Bridge and Structural Engineering, 1971, 31(1):179-195.
  • 5Filho F V. Finite element analysis of structures under moving loads [J ]. Shock and Vibration Digest, 1978,10 (8) : 27- 35.
  • 6Olsson M. Finite element,modal co-ordinate analysis of structures subjected to moving loads [J]. Journal of Sound and Vibration,1985,99(1) :1-12.
  • 7Thambiratnam D,Zhuge Y. Dynamic analysis of beams on anelastic foundation subjected to moving loads [J]. Journal of Sound and Vibration, 1996,198 (2) : 149-169.
  • 8WU Jong - shyong , DAI Chang - wang. Dynamic responses of multispan nonuniform beam due to moving loads[J]. Journal of Structural Engineering, 1987,113 (3) : 458-474.
  • 9Clough R W, Penzien J. Dynamics of Structures[M]. McGraw-Hill Inc. ,New York,1975.
  • 10Meirovitch L. Analytical Methods in Vibrations[M]. Macmillan Company,London,U. K. ,1967.

共引文献157

同被引文献170

引证文献36

二级引证文献260

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部