期刊文献+

梯度压电悬臂梁的解析解及其逆问题 被引量:1

Analytical Solutions and Inverse Problem of Functionally Gradient Piezoelectric Cantilever
下载PDF
导出
摘要 在平面应变状态下,考虑材料压电参数的梯度特性,采用逆解法求解了悬臂梁受力偶和外加电压作用时的解析解,并通过与基于BaTiO3陶瓷所得实验值的对比发现,其结果与N层压电板组成的悬臂梁当N趋于∞时其端部弯曲位移值十分接近,且悬臂梁内部应力场逐渐减少为零的结论在此得到了验证.基于所得到的解析解,提出了梯度相物性参数识别的方法. Based on the theory of elasticity, the bending behavior of piezoelectric cantilever with gradient property for piezoelectric parameter g31 is studied. By use of Airy stress function method, the solution of cantilever subjected to a couple and an electric field is obtained. The results obtained in present paper are compared with that from both experiment and other analytical models based on c_ceramics. It is found that the tip deflection of cantilever obtained in present paper agrees well with the result of N_morph cantilever when the number N gets to ∞. Present paper also gives a theoretical demonstration that all the mechanical stresses will be vanishing in FGM actuators. Additionally addressed in present paper is a method of parameter identification.
出处 《北方交通大学学报》 CSCD 北大核心 2004年第1期47-50,共4页 Journal of Northern Jiaotong University
基金 国家自然科学基金资助项目(59702010) 高等学校优秀青年教师教学科研奖励计划资助项目
关键词 梯度功能材料 压电参数 悬臂梁 参数识别 FGM, piezoelectric parameter, cantilever, parameter identification
  • 相关文献

参考文献6

  • 1Rao S S, Sunar M. Piezoelectricity and Its use in Disturbance Sensing and Control of Flexible Structures: a Survey[J]. ASME Applied Mechanics Reviews, 1994, 47: 113-123.
  • 2Shi Z F. Genenral Solution of a Density Functionally Gradient Piezoelectric Cantilever and Its Applications[J]. Smart Materials and Structural, 2002, 11(1): 122-129.
  • 3Chen W Q, Ding H J. On Free Vibration of a Functionally Graded Piezoelectric Rectangular Plate[J]. Acta Mech., 2002, 153: 207-216.
  • 4Hauke T, Kouvatov A. Bending Behavior of Functionally Gradient Materials[J]. Ferroelectrics, 2000, 238: 195-202.
  • 5Kruusing A. Analysis and Optimization of Loaded Cantilever Beam Microactuators[J]. Smart Mater. Struct., 2000, 9: 186-196.
  • 6Marcus M A. Performance Characteristics of Piezoelectric Polymer Flexure Mode Devices[J]. Ferroelectrics, 1984, 57:203.

同被引文献7

  • 1张彤,孟庆元,王富耻.层合结构压电器件的机电耦合响应[J].计算力学学报,2005,22(2):237-241. 被引量:1
  • 2[5]Smits J G,Dalke S I,Cooney T K.The Constituent Equation of Piezoelectric Bimorphs[J].Sensors and Actuator,1991,A,28:41-61.
  • 3[8]Saeed Moaveni,Finite Element Analysis Theory and Application with ANSYS,Second Edition[M].Publishing House of Electronics Industry,2005:498-529.
  • 4[11]Wang Z H,Zhu W G,Yao X.d31 Type Inplane Bending Multi-Layer Piezoelectric Microactuators-A Design Concept and its Applications[J].Sens Actuators,2002,101:262-268.
  • 5[12]Jing Y,Luo J B,Yang W Y,et al.Fabrication of Piezoelectric Ceramic Micro-Actuator and its Reliability for Hard Disk Drives[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2004,51 (11):1470-1476.
  • 6孙立宁,刘品宽,刘涛,吴善强.双压电膜驱动器的有限元分析与实验研究[J].压电与声光,2003,25(3):191-195. 被引量:3
  • 7李东明,孙宝元,董维杰,张化岚.压电双晶片执行器驱动位移模型研究[J].中国机械工程,2003,14(17):1499-1501. 被引量:15

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部