期刊文献+

基于贝叶斯网络的马尔科夫毯预测学习 被引量:7

LEARNING MARKOV BLANKET PREDICTION BASED ON BAYESIAN NETWORK
原文传递
导出
摘要 研究变量之间的预测能力在许多领域都有重要意义,通过这种研究,能够揭示变量之间的制约机制,贝叶斯网络是研究变量之间预测能力的有力工具。本文使用依赖分析方法建立基于贝叶斯网络的马尔科夫毯预测,其核心问题是贝叶斯网络结构学习。目前,基于依赖分析的贝叶斯网络结构学习方法主要存在三个问题:(1)需要进行大量的高维条件概率计算,(2)容易丢失弱联合依赖边,(3)对边的方向的确定具有局限性。针对这些问题,本文提出了首先进行递推条件独立性检验,然后进行因果语义定向,最后进行冗余边检验的贝叶斯网络结构学习方法。该方法能够有效地避免这些问题,更准确地建立马尔科夫毯预测。 Research on prediction ability between variables is very important in many domains. Through this kind of research, the restriction mechanism between variables can be revealed. Bayesian network is a powerful tool of studying prediction ability between variables. In this paper, Markov blanket prediction based on Bayesian network is built by means of dependency analysis. The key of learing Markov blanket prediction is to set up Bayesian network structure. At present, there mainly exist three problems in the methods of learning Bayesian network structure based on dependency analysis: (1) it is needed to calculate a large number of conditional probability with high dimension, (2) some weak joint dependent relationships are easily lost, (3) there are often some edges that can not be oriented. To solve these problems, a new method of learning Bayesian network structure is presented. First conditional independence between variables is tested in the form of recursion, then the edges are oriented according to the causal semanitics of an are' s direction, at last redundancy edges are checked up. This kind of method can effectively avoid these problems to build Markov blanket prediction more accurately.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2004年第1期17-21,共5页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60275026) 吉林省自然科学基金(No.2230517-1)
关键词 贝叶斯网络 马尔科夫毯 预测学习 概率 学习方法 Bayesian Networks, Prediction, Markov Blanket, Causal Semanitics, Collider Identification
  • 相关文献

参考文献12

  • 1陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138. 被引量:96
  • 2Ramoni M, Seba.stiarni P. Robust Bayes Classifiers. Artificial Intelligence, 2001, 125(2) : 209- 226.
  • 3Friedman N, Geiger D, Goldszrnidt M. Bayesian Network Classitiers. Machine Learning, 1997, 29: 131- 161.
  • 4Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo, California: Morgan Kaufmann,1988, 117- 133.
  • 5Kohavi R, John G H. Wrappers for Feature Subset Selection. Artificial Intelligence, 1997, 97(2) : 273 - 324.
  • 6Heckerman D, Geiger D, Chickering D M. Learning Bayesian Networks: The Combination of Knowledge and Statistical Data. Machine Learning, 1995, 20:197-243.
  • 7Wong M L, Lain W, Leung K S. Using Evolutionary Programming and Mininum Description Length Principle for Data Mining of Bayesian Networks. IEEE Trans on Pattern Analysis and Machine Intelligence, 1999, 21(2): 174-178.
  • 8Buntine W. A Guide to the Literature on Learning Probabilistic Networks from Data. IEEE Trans on Knowledge and Data Engineering, 1996, 8(2): 195-210.
  • 9Cheng J, Greiner R, Kelly J. Learning Bayesian Networks from Data: An Efficient Approach Based Information-Theory. Artificial Intelligence, 2002, 137(2) : 43 - 90.
  • 10Chickering D M. Learning Equivalence Classes of Bayesian Network Structures. Machine Learning, 2002, 2: 445- 498.

二级参考文献3

  • 1Wu X,A Heuristic Covering Algorithm for Extension Matrix Approach.Department of Artificial Intelligence,1992年
  • 2洪家荣,Proc Int Computer Science Conference’88, Hong Kong,1988年
  • 3洪家荣,Int Jnal of Computer and Information Science,1985年,14卷,6期,421页

共引文献95

同被引文献47

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部